Demystifying the
Secure Enclave Processor

Tarjei Mandt (@kernelpool)
Mathew Solnik (@msolnik)

David Wang (@planetbeing)

T eosEsess @azimuth

About Us

- Tarjei Mandt
= Senior Security Researcher, Azimuth Security
o tm@azimuthsecurity.com

« Mathew Solnik
= Director, OffCell Research
= ms@offcellresearch.com

- David Wang
= Senior Security Researcher, Azimuth Security
« dw@azimuthsecurity.com

Introduction

- 1iPhone 5S was a technological milestone
= First 64-bit phone
- Introduced several technological advancements
» Touch ID
= M7 motion coprocessor
= Security coprocessor (SEP)
- Enabled sensitive data to be stored securely
= Fingerprint data, cryptographic keys, etc.

Secure Enclave Processor

» Security circuit designed to perform secure
services for the rest of the SOC

= Prevents main processor from gaining direct
access to sensitive data

- Used to support a number of different services
s Most notably Touch ID
- Runs its own operating system (SEPOS)

= Includes its own kernel, drivers, services, and
applications

Secure (?) Enclave Processor

» Very little public information exists on the SEP
= Only information provided by Apple

- SEP patent only provides a high level overview
= Doesn’t describe actual implementation details

- Several open questions remain
» What services are exposed by the SEP?
= How are these services accessed?
= What privileges are needed?
» How resilient is SEP against attacks?

Talk Outline

« Part 1: Secure Enclave Processor
» Hardware Design
= Boot Process
« Part 2: Communication
= Mailbox Mechanism
= Kernel-to-SEP Interfaces
« Part 3: SEPOS
> Architecture / Internals
- Part 4: Security Analysis
= Attack Surface and Robustness

rardware Design

Demystifying the Secure Enclave Processor

SEP’s ARM Core: Kingfisher

- Dedicated ARMv7a “Kingfisher” core

= Even EL3 on AP’s core won’t doesn’t give you
access to SEP

- Appears to be running at 300-400mhz~
« One of multiple kingfisher cores in the SoC

= 2-4 Other KF cores - used for NAND/SmartIO/etc
= Other cores provide a wealth of arch knowledge

- Changes between platforms (A7/A8/A9)
= Appears like anti-tamper on newer chips

Dedicated Hardware Peripherals

- SEP has its own set of peripherals accessible by
memory-mapped 10
= Built into hardware that AP cannot access
* Crypto Engine & Random Number Generator

» Security Fuses
- GID/UID Keys

« Dedicated IO lines -

= Lines run directly to off-chip peripherals
- GPIO
- SPI
- UART
- 12C

Shared Hardware Peripherals

- SEP and AP share some peripherals

- Power Manager (PMGR)
= Security fuse settings are located in the PMGR
= Lots of other interesting items

» Memory Controller
= Can be poked at via i0S kernel

- Phase-locked loop (PLL) clock generator
= Nothing to see here move along...

» Secure Mailbox
= Used to tranfer data between cores

- External Random Access Memory (RAM)

Physical Memory

« Dedicated BootROM (and some SRAM)
s BootROM physically located at ox2_odao_0000
- Uses inline AES to encrypt external RAM

= Most likely to prevent physical memory attacks
against off SoC RAM chips (iPads)

- Hardware “filter” to prevent AP to SEP memory
access
s Only SEP’s KF core has this filter

SEP KF Filter Diagram

From SoC To SoC

: SEP Filter
Mailbox

Crypto SEPKF Core GPIOs

BootROM

Boot Process

Demystifying the Secure Enclave Processor

SEP Initialization - First Stage

« AP comes out of reset. AP BootROM releases
SEP from reset.

» This is irreversible. No hardware register to reset
or stop SEP accessible by AP.

- Initially uses 4096 bytes of static RAM for stack
and variables.

- Uses page tables in ROM.
> Needs Large Physical Address Extension.

- Starts a message loop.

SEP Initialization - Second Stage

- Listens for messages in the mailbox.
- 8-byte messages that have the same format
SEPOS uses.

- All messages use endpoint 255
(EP_BOOTSTRAP)

1, 2 “Status check” (Ping)
3 Generate nonce
4 Get nonce word

5 “BootTZ0” (Continue boot)

Memory Protections

» SEP needs more RAM than 4096 bytes of SRAM,
so it needs external RAM.

-« RAM used by SEP must be protected against AP
tampering.

- Two regions configurable by AP are setup:
= TZ0 is for the SEP.

o TZ1 1s for the AP’s TrustZone (Kernel Patch
Protection).

- SEP must wait for AP to setup TZo to continue
boot.

|
SEP Boot Flow

SEP AP
Configure TZo and TZ1 .
1Boot
- Kernel
Send Ping
Acknowledge Ping > Send BootTZo
Acknowledge BootTZo > Send Ping
v
Map in TZo
v
Stage 2 Setup Memory Encryption
Stage 3 Begin Stage 3

SEP Memory Protection Bootstrap

Configure TZo and
« SEP doesn’t take AP’s word for 71 Boot
it that TZo is locked. ‘ Kernel
. Send Pi
= Checks hardware registers for , M
10Ck. Acknowledge Ping > Send BootTZo
= Then reads size and address
of TZo from other hardware
. Acknowledge Send Ping
registers. BootTZo
- Impossible to change these Map in TZ0
hardware registers after TZo is Setup Memory

Stage 2 Encryption

locked. ,
. . Stage 3
- Spin processor on failure.

Begin Stage 3

i i

Memory Encryption Modes

» Appears to support ECB, CBC, and XEX.
- Capable of AES-128 or AES-256.

 Supports two channels.
= BootROM uses channel 1.
= SEPOS uses channel o.

- All access to certain ranges of physical addresses
get encrypted/decrypted transparently.

= After boot, SEPOS has all page mappings into the
encrypted range (except for hardware regs and
memory shared with AP).

Key Generation

- Keys are generated by “tangling”:
s True Random Number Generator output
= Static "type” value.
- With protected (unreadable) registers:
= UID, GID, Seed A, Seed B.
- Seed B tangled with UID == GenID_ 2B
- Encrypt the following using GenID_ 2B to
generate key:
o [4 byte magic = 0xFF XK1][4 bytes of 0s][192-bits
of randomness]

Beginning Stage 3

. . Configure TZo and
- After memory encryption is TZ1 Boot
setup, SEP re-initializes to use ‘ Kernel
encrypted memory: , Send Pine
o Page tables Acknowledge Ping > Send BootTZo
= Stack
. Data AcknO\:vledge o Send Pi
. BootTZo " end Fing
- Begins a new message loop v
Map in TZo

with no shared code between it .
and the initial low-capability = suge.| SmMemoy
bootstrap. '

Stage 3

Begin Stage 3

.,
SEP Boot Flow: Stage 3

SEP AP
Acknowledge Ping > Send ART
; |
Copy in ART
v
Acknowledge ART > Send SEPOS
Copy in SEPOS
3
Validate SEPOS and ART
Y
Acknowledge SEPOS » Send Shared Memory Addr
v
Boot SEPOS

Boot-loading: Img4

« SEP uses the “IMG4” bootloader format which is
based on ASN.1 DER encoding
= Very similar to 64bit iBoot/AP Bootrom
= Can be parsed with “openssl -asniparse”

- Three primary objects used by SEP
= Payload —
» Contains the encrypted sep-firmware
= Restore —
» Contains basic information when restoring SEP

= Manifest (aka the AP ticket) -

- Effectively the Alpha and the Omega of bootROM
configuration (and security)

Img4 - Manifest

« The manifest (APTicket) contains almost all the
essential information used to authenticate and
configure SEP(OS).

- Contains multiple hardware identifier tags
o ECID
= ChipID
= Others

- Is also used to change runtime settings in both
software and hardware
= DPRO — Demote Production
s DSEC — Demote Security
= QOthers...

Reversing SEP’s Img4 Parser: Stage 1

- How can you reverse something you cannot see?
= Look for potential code reuse!

- Other locations that parse IMG4
= AP BootROM — A bit of a pain to get at
= iIBoot — Dump from phys memory - 0x8700xx000

- Not many symbols...

» But sometimes it only takes 1...

X8, #almg4decodecopy@PAGE ; "Img4DecodeCopyManifestHash((const Img4 "...
X8, X8, #almg4decodecopy@PAGEOFF ; "Img4DecodeCopyManifestHash((const Img4
X8, [SP,#0x3Co+var_3A8]
X8, #0x187

Loc_83D8099B4 (iBoot from n51)

Reversing SEP’s Img4 Parser: Stage 2

 Another file also contains the “Img4Decode” symbol
= /usr/libexec/seputil

 Userland IMG4 parser with many more symbols
= May not be exact — but bindiff shows it is very close

« From symbols found in seputil we can deduce:

= The ASN’1 decoder is based on libDER
- Which Apple so kindly releases as OpenSource.

s The RSA portion is handled by CoreCrypto

« LibDER + CoreCrypto = SEP’s IMG4 Parsing engine
= We now have a great base to work with

Img4 Parsing Flow

« SEP BootROM copies in the sep-firmware.img4
from AP

« Initializes the DER Decoder
s Decodes Payload, Manifest, and Restore Info
- Verifies digests and signing certificates

= Root of trust cert is hardcoded at the end of
BootROM

- Verifies all properties in manifest
= Checks against current hardware fusing

- If all items pass — load and execute the payload

Img4 Parsing Flow

SEP AP
y
< Sends SEP IMG4
Decode Payload & Manifest
Validate (;ertificates
Validat; Digest
Validate*Manifest

Validate Properties Against Certificate
v
Read Fuses Validate Properties Against Hardware

Boot SEPOS

Communication

Demystifying the Secure Enclave Processor

Secure Mailbox

» The secure mailbox allows the AP to
communicate with the SEP
» Features both an inbox (request) and outbox
(reply)
- Implemented using the SEP device 1/0 registers
= Also known as the SEP configuration space

Interrupt-based Message Passing

- When sending a message, the AP writes to the
inbox of the mailbox

- This operation triggers an interrupt in the SEP
» Informs the SEP that a message has been received

- When a reply is ready, the SEP writes a message
back to the outbox

= Another interrupt is generated in order to let the
AP know a message was received

Mailbox Mechanism

Yes

Address ==
Inbox

No
v
Update inbox with Ignore write
write data operation

Read
operation?

Yes

Address ==
Outbox

No
v

l

Generate interrupt

Respond to read
with nonce data

Respond to read
with outbox data

Yes

for SEP processor

Generate interrupt
—> Pt

for AP processor

Data written to
outbox?

N “

Mailbox Message Format

- A single message is 8 bytes in size
- Format depends on the receiving endpoint
- First byte is always the destination endpoint

struct {
uint8 t endpoint; // destination endpoint number
uint8 t tag; // message tag
uint8 t opcode; // message type
uint8 t param; // optional parameter
uint32 t data; // message data

} sep msg;

SEP Manager

- Provides a generic framework for drivers to
communicate with the SEP

» Implemented in AppleSEPManager.kext
> Builds on the functionality provided by the IOP
- Enables drivers to register SEP endpoints
= Used to talk to a specific SEP app or service
= Assigned a unique index value
- Also implements several endpoints of its own
= E.g. the SEP control endpoint

SEP Endpoints (1/2)

o) AppleSEPControl AppleSEPManager.kext
1 AppleSEPLogger AppleSEPManager.kext
2 AppleSEPARTStorage AppleSEPManager.kext
3 AppleSEPARTRequests AppleSEPManager.kext
4 AppleSEPTracer AppleSEPManager.kext
5 AppleSEPDebug AppleSEPManager.kext
6 <not used>

7 AppleSEPKeyStore AppleSEPKeyStore.kext

SEP Endpoints (2/2)

8 AppleMesaSEPDriver AppleMesaSEPDriver.kext

9 AppleSPIBiometricSensor AppleBiometricSensor.kext

10 AppleSEPCredentialManager ~ AppleSEPCredentialManager.kext
11 AppleSEPPairing AppleSEPManager.kext

12 AppleSSE AppleSSE.kext

254 L4Info

255 Bootrom SEP Bootrom

Control Endpoint (EPO)

- Handles control requests issued to the SEP

- Used to set up request and reply out-of-line
buffers for an endpoint

- Provides interface to generate, read, and
invalidate nonces

- The SEP Manager user client provides some
support for interacting with the control endpoint
» Used by the SEP Utility (/usr/libexec/seputil)

Control Endpoint Opcodes

0 NOP Used to wake up SEP

2 SET_OOL_IN_ADDR Request out-of-line buffer address
3 SET_OOL_OUT_ADDR Reply out-of-line buffer address

4 SET_OOL_IN_SIZE Size of request buffer

5 SET_OOL_OUT_SIZE Size of reply buffer

10 TTYIN Write to SEP console

12 SLEEP Sleep the SEP

Out-of-line Buffers

- Transferring large amounts of data is slow using
the interrupt-based mailbox
» Out-of-line buffers used for large data transfers

- SEP Manager provides a way to allocate SEP
visible memory
= AppleSEPManager::allocateVisibleMemory(...)
= Actually allocates a portion of physical memory

- Control endpoint is used to assign the request/
reply buffer to the target endpoint

Endpoint Registration (AP

:

Inserts endpoint at the Insert endpoint in
specified table index endpoint table

AppleSEPManager::endpointForHandle()

OOL buffers
. No
required?

¢ Yes

Physically contigui(?us Allocate SEP visible) Reg.ister OO!. buffer) Assign send F)uffer
memory region memory with SEP via EPO to endpoint

v

EP visi . L . .
Allocate SEP visible > Reg.lster OO. buffer > Assign receive buffer
memory with SEP via EPO to endpoint

Drivers Using SEP

» Several drivers now rely on the SEP for their
operation

- Some drivers previously located in the kernel
have had parts moved into the SEP
= Apple(SEP)KeyStore
= Apple(SEP)CredentialManager

« Most drivers have a corresponding app in the
SEP

SEPOS

Demystifying the Secure Enclave Processor

L4

- Family of microkernels

» First introduced in 1993 by Jochen Liedtke
= Evolved from L3 (mid-1980s)

« Developed to address the poor performance of
earlier microkernels

= Improved IPC performance over L3 by a factor
10-20 faster

- Numerous variants and implementations

= E.g. L4-embedded optimized for embedded
systems

SEPQOS

» Based on Darbat/L4-embedded (ARMv?7)
» Custom modifications by Apple

- Implements its own drivers, services, and
applications
» Compiled as macho binaries

 The kernel provides only a minimal set of
interfaces

= Major part of the operating system implemented
in user-mode

SEPOS Architecture

SEP Applications

ART Manager / Secure Biometric Secure Credential
ART Mate Secure Key Store Engine Manager SSE
Core SEPOS
SEP Drivers Sl SEP Services libSEPOS
Components (Bootstrap Server)

*

1

1

1

: Embedded Runtime (ERT)

1

1

1

O

1

1

1

1

: Kernel (L4)

1

1

1

\ 4

Hardware

Kernel (L4)

- Initializes the machine state to a point where it
is usable
» Initializes the kernel page table
= Sets up the kernel interface page (KIP)
= Configures the interrupts on the hardware
= Starts the timer
= Initializes and starts the kernel scheduler
= Starts the root task

» Provides a small set (~20) of system calls

System Calls (1/2)

0X00 L4_Ipc Set up IPC between two threads

0x00 L4_ Notify Notify a thread

0x04 L4_ThreadSwitch Yield execution to thread

0x08 L4_ThreadControl Create or delete threads

0x0C L4_ExchangeRegisters Exchange registers wit another thread
0x10 L4_Schedule Set thread scheduling information
0x14 L4_MapControl Map or free virtual memory

0x18 L4_SpaceControl Create a new address space

ox1C L4_ProcessorControl Sets processor attributes

System Calls (2/2)

0x20 L4_ CacheControl Cache flushing

0x24 L4_IpcControl Limit ipc access

0x28 L4_ InterruptControl Enable or disable an interrupt
0x2C L4_GetTimebase Gets the system time

0X30 L4 SetTimeout Set timeout for ipc sessions

0x34 L4_SharedMappingControl Set up a shared mapping
0x38 L4_SleepKernel ?
0x3C L4_PowerControl ?

0X40 L4_Kernellnterface Get information about kernel

Privileged System Calls

- Some system calls are considered privileged
= E.g. memory and thread management calls

« Only root task (SEPOS) may invoke privileged
system calls
= Determined by the space address of the caller

» Check performed by each individual system call
where needed
= is_ privileged_ space()

Privileged System Calls

SYS SPACE CONTROL (threadid t space tid, word t control, fpage t kip area,
fpage t utcb area)
{
TRACEPOINT (SYSCALL SPACE CONTROL,
printf ("SYS SPACE CONTROL: space=%t, control=%p, kip area=%p, "
"utcb area=%p\n", TID (space tid),
control, kip area.raw, utcb area.raw));

// Check privilege

if (EXPECT FALSE (! is_privileged space(get current space())))
{ Check for root task in
get current tcb ()->set error code (ENO PRIVILEGE) ; L4_ SpaceControl
return space control (0, 0); .Eyﬂﬁnlcau
}
/
} INLINE bool is privileged space(space t * space)

{

return (is roottask space (space); r

from darbat 0.2 source

SEPOS (INIT)

- Initial process on boot (root task)
= Can call any privileged L4 system call
- Initializes and starts all remaining tasks

= Processes an application list embedded by the sep-
firmware

« Maintains a context structure for each task

o Includes information about the virtual address
space, privilege level, threads, etc.

- Invokes the bootstrap server

SEPOS App Initialization

Creates new process
and address space
(L4_SpaceControl)

Maps the Mach-O
header from physical
memory

Reads Mach-O header
and maps segments
(L4_MapControl)

Initialize Apps

Read application list
from sep-firmware

proc_create()

l

ertp_map_page()

l

Last appin list?

macho2vm()

thread_create()

Compute CRC of Compares CRC with value

| loaded images stored in sep-firmware

Create and start new
thread at app entry point
(L4 _ThreadControl)

Application List

- Includes information about all applications
embedded by the SEP firmware
» Physical address (offset)
= Virtual base address
s Module name and size
s Entry point

- Found 0xECS8 bytes prior to the SEPOS binary in
the sep-firmware image

Application List

Physical address
. (offset)
Virtual address
:3130h: 00 30 08 00 00 00 00 00 ... eueu... 0.evnn.
:3140h: 00 70 00 00 00 A0 01 00 24 AD 00 00 53 45 50 4F .P... ..5-..SEPO

69 A3 31 AD S ~"30if1-
00 00 00 00 -A6&lir .P......
:3170h: 00 80 00 Of Entry point |53 45 50 44 .€...... 6N. .SEPD
:3180h: 72 69 76 6°& 20 zr—ro-rm—ro E2 D9 3F 8A rivers !y.paU?$
:3190h: BD 92 CF 1A OF 09 82 BE 00 DO OB 00 00 00 00 00 % I...,%.D......
:31A0nh: 00 80 00 00 00 60 01 00 A8 24 01 00 73 65 70 53 €... ..75..sepS
:31B0h: 65 72 76 69 63 65 73 20 92 5B CA 76 39 7B 30 0F ervices ’[Ev9{0.
:31C0Oh: 82 3C 13 D3 6D 81 54 90 00 30 OD 00 00 00 00 0O ,<.0m.T..0......
:31D0h: 00 80 00 00 00 10 01 00 EO OF 01 00 41 52 54 4D ..., a...ARTM
:31EO0h: 61 6E 61 67 65 72 20 20 29 DD B6 85 EC OF 38 3C anager)¥9..1.8<
:31F0h: A4 23 65 CB 88 E5 7A 7A 00 40 OE 00 00 00 00 00 ©xn#eE"dzz.@......
:3200nh: 00 10 00 00 00 60 07 00 88 75 01 00 73 6B 73 20 ‘.. u..sks

:3210nh: 20 20 20 20 20 20 20 20 FC 1A 5C 06 A6 8D 31 12 a.\.].1.

:3150h: 53 20 20 20
:3160h: AC C5 36 2f

20 20

0O 0O CO 0O 0O GO 0O OO OGO 0O OO OO 0O O

Bootstrap Server

- Implements the core functionality of SEPOS

s Exports methods for system, thread and object
(memory) management

- Made available to SEP applications over RPC via
the embedded runtime
= ert_rpc_bootstrap_server()

- Enable applications to perform otherwise
privileged operations
= E.g. create a new thread

Privileged Methods

-« An application must be privileged to invoke
certain bootstrap server methods

= Query object/process/acl/mapping information
- Privilege level is determined at process creation
» Process name >= ‘A ‘and <= ZZZ7Z
» E.g. “SEPD” (SEPDrivers)
 Check is done by each individual method
= proc_has_ privilege(int pid);

sepos_object_acl_info()

int sepos object acl info(int *args)
{

int result;

int prot;

int pid;

Call to check if sender’s
pid is privileged
args[18] = 1;

*((_BYTE *)args + 104) = 1;
result = proc_has privilege(args[1l]);
if (result ==)

{

result = acl get(args[5], args[6], &pid, &prot);
if (!result)
{

}

return result;

Entitlements

- Some methods also require special entitlements
= sepos_object_create_phys()
= sepos_object_remap()

- Seeks to prevent unprivileged applications from
mapping arbitrary physical memory

- Assigned to a process on launch
= Separate table used to determine entitlements

Entitlement Assignment

int proc create(int name)

{

int privileged = 0;

; _DWORD privileged_tasks[10]
privileged_tasks DCD 'SEPD'
if ((name >= 'A ') && (name <= 'zzzz'))| int[] DCD 2
privileged = 1; DCD 'ARTM'
DCD 6
proctab[pid].privileged = privileged; DCD 'Debu’
proctab[pid].entitlements= 0; DCD 6
DCD O
while (privileged tasks[2 * i] != name) DCD 0
if (+4+1 ==)

return pid;
proctab[pid].entitlements= privileged tasks[2 * i + 1];

return pid;

Entitlement Assignment

SEPDrivers MAP_PHYS
ARTManager/ARTMate MAP_PHYS | MAP_SEP
Debug MAP_PHYS | MAP_SEP

- MAP_PHYS (2)
= Required in order to access (map) a physical region

. MAP_SEP (4)

= Same as above, but also needed if the physical region
targets SEP memory

SEP Drivers

- Hosts all SEP drivers
o AKF, TRNG, Expert, GPIO, PMGR, etc.
» Implemented entirely in user-mode

- Maps the device 1/0 registers for each driver
= Enables low-level driver operations

- Exposed to SEP applications using a dedicated
driver API

» Includes functions for lookup, control, read, and
write

Driver Interaction

. SEPDrivers
Retrieves SEPD thread SEPOS (Reglsszi\:sicZEPD
handle from list Driver Driver Driver
on startup
y Y A
A
Lookup handle to

SEPD service
Y

Driver lookup [« Lookug)rihvaer:dle to__|

Driver control / < Perform driver__|
read / write operation

AKF Driver

- Manages AP/SEP endpoints in SEPOS
- Handles control (EP0) requests
= E.g. sets up objects for reply and response OOL
buffers
- SEP applications may register new endpoints to
handle specific AP requests

s AKF_ENDPOINT_REGISTER (0x412C) control
request

SEP Services

» Hosts various SEP related services
= Secure Key Generation Service
= Test Service
= Anti Replay Service
» Entitlement Service
 Usually implemented on top of drivers
» Service API provided to SEP applications
s service_lookup(...)
= service_ call(...)

Service Interaction

Registers sepS SRR
Retrieves sepS thread ¢ .
handle from list SEROS Service Service Service Service
on startup

A
T A
Lookup handleto
sepS service

< Lookup handleto

Service lookup service

Issue a service
request

Service call <

SEP Applications

- Primarily designed to support various drivers
running in the AP

= AppleSEPKeyStore 2 sks
= AppleSEPCredentialManager - scrd
- Some apps are only found on certain devices
= E.g. SSE is only present on iPhone 6 and later
- May also be exclusive to development builds
s E.g. Debug application

Attacking SEP

Demystifying the Secure Enclave Processor

Attack Surface: SEPOS

« Mostly comprises the methods in which data is
communicated between AP and SEP
» Mailbox (endpoints)
= Shared request/reply buffers

- Assumes that an attacker already has obtained
AP kernel level privileges
» Can execute arbitrary code under EL1

Attack Surface: AKF Endpoints

- Every endpoint registered with AKF is a
potential target
» Includes both SEP drivers and applications

- Does not require an endpoint to be registered
with the SEP Manager (AP)
= Can write messages to the mailbox directly

= Alternatively, we can register our own endpoint
with SEP Manager

Attack Surface: AKF Endpoints

0 SEPD/epo

1 SEPD/ep1 v

2 ARTM v v iPhone 6 and prior
3 ARTM v v iPhone 6 and prior
7 sks v v

8 sbio/sbio v v

10 scrd/scrd v v

12 sse/sse v v iPhone 6 and later

List of AKF registered endpoints (iOS 9) and their use of out-
of-line request and reply buffers

Attack Surface: Endpoint Handler

(] (] Graph overview] . \L
‘ SEP Biometrics i
message handler
Y,

Attack Robustness

- How much effort is required to exploit a SEP
vulnerability?
» E.g. stack/heap corruption
« Determined by several factors
» Address space layout
= Allocator (heap) hardening
= Exploit mitigations
> And more

Address Space Layout

- SEP applications are loaded at their preferred
base address
> No image base randomization

= Typically based at 0x1000 or 0x8000 (depending
on presence of pagezero segment)

« Segments without a valid memory protection
mask (!= 0) are ignored
s E.g. _ PAGEZERO is never “mapped”

Stack Corruptions
» The main thread of a SEP

application uses an image it
embedded stack \
= A corruption could overwrite DATA

adjacent DATA segment data _ | [——

 Thread stacks of additional —
threads spawned by SEPOS are Vet emery
mapped using objects |
o= Allocated with gaps = “guard

pages”

0x1000 bytes)

‘ System stack
‘ (

Stack Corruptions

- SEP applications are compiled with stack cookie
protection
= Cookie value is fixed to ‘GARD’
= Trivial to forge/bypass
 Stack addresses are in most cases known
= Main thread stack is at a known address

= Addresses of subsequent thread stacks are
predictable

Heap Corruptions: malloc()

- Runtime allocator leveraged by SEP applications
» K&R implementation

- Singly linked free list (ordered by size) with
header that includes pointer and block size
= struct Header { void * ptr, size_t size };
= Coalesces adjacent elements on free()

» Size of heap determined on initialization
s malloc_init(malloc_base, malloc_ top);
» Non-expandable

Heap Corruptions: malloc()

I
I
I
I
I
|
I
Free List > Next Next Next

Size Size Size

Data (Free) Data (In Use) Data (Free)

Image DATA segment

Heap Corruptions: malloc()

- No protection of heap metadata
= Free list pointers can be overwritten
> Block size can be corrupted
- Allocation addresses are predictable
» Malloc area embedded by _ DATA segment in
application image
= Allocations made in sequential order

No-Execute Protection

- SEPOS implements no-execute protection

- Always set when a page is not marked as
executable
» space_t::map_fpage()
= Sets both XN and PXN bits in page table entries

- Non-secure (NS) bit also set for all pages outside
SEP memory region

SEPOS Mitigations Summary

Stack Cookie Protection Yes (...) ‘GARD’ — mostly ineffective
Memory Layout Randomization

User No

Kernel No Image base: 0xF0O001000
Stack Guard Pages Yes/No Not for main thread
Heap Metadata Protection No
Null-Page Protection No Must be root task to map page

No-Execute Protection Yes Both XN and PXN

Attack Surface: BootROM

- Effectively only two major attack surfaces
= JMG4 Parser
* Memory Corruption
» Logic Flaws

= Hardware based
« Only minor anti-exploit mitigations present
s No ASLR
= Basic stack guard
= One decent bug = game over

Attacking IMG4

- ASN.1is a very tricky thing to pull off well
= Multiple vulns in OpenSSL, NSS, ASN1C, etc

- LibDER itself actually rather solid

= “Unlike most other DER packages, this one does no

malloc or copies when it encodes or decodes”
— LibDER’s readme.txt

» KISS design philosophy
- But the wrapping code that calls it may not be
= Audit seputil and friends
= Code is signifigantly more complex then libDER itself

Attack Surface: Hardware

- Memory corruption attacks again data receivers
on peripheral lines
o SPI
s [2C
o= UART
- Side Channel/Differential Power Analysis
= Stick to the A7 (newer ones are more resistant)
» Glitching
» Standard Clock/Voltage Methods
= Others

External RAM

- Encrypted memory has no validation.
= Can corrupt bits of SEP memory

- When generating the encryption key the
“random component” is temporarily stored
unencrypted in external RAM.

= This may allow an attacker to influence generation
of the final memory encryption key

Attacking the Fuse Array

- Potentially one of the most invasive attack
vectors

= Requires a lot of patience

= High likelihood of bricking
- Laser could be used

= Expensive method - not for us
- Primary targets

s Production Mode

= Security Mode

End Game: JTAG

» Glitch the fuse sensing routines
= Requires a 2000+ pin
socket

= Need to bypass CRC and
fuse sealing

= “FSRC” Pin - A line into
fuse array?

» Attack the IMG4 Parser A8 SoC Pins
= What exactly do DSEC and DPRO really do?

Conclusion

Demystifying the Secure Enclave Processor

Conclusion

- SEP(OS) was designed with security in mind
» Mailbox interface
= Privilege separation

- However, SEP(OS) lacks basic exploit
protections
= E.g. no memory layout randomization

- Some SEP applications expose a significant
attack surface
= E.g. SEP biometrics application

Conclusion (Continued)

» Overall hardware design is light years ahead of
competitors
» Hardware Filter
= Inline Encrypted RAM
= Generally small attack surface
- But it does have its weaknesses
= Shared PMGR and PLL are open to attacks
s Inclusion of the fuse source pin should be re-evaluated

= The demotion functionality appears rather dangerous
« Why does JTAG over lightning even exist?

Thanks!

- Ryan Mallon
- Daniel Borca
« Anonymous reviewers

Bonus Slides

Demystifying the Secure Enclave Processor

SEPQOS: System Methods
I e N

sepos_proc_ getpid() Get the process pid
0 1 sepos_proc_find_service() Find a registered service by name
0 1001 sepos_proc_limits() Query process limit information X
0 1002 sepos_proc_info() Query process information
0 1003 sepos_thread_info() Query information for thread
0 1004 sepos_thread_info_by_tid() Query information for thread id
0 1100 sepos_grant_capability() - X

0 2000 sepos_panic() Panic the operating system

SEPOS: Object Methods (1/2)
O e L N

sepos_object_create() Create an anonymous object
1 1 sepos_object_create_phys() Create an object from a physical region x (%)
1 2 sepos_object_map() Map an object in a task’s address space
1 3 sepos_object_unmap() Unmap an object (not implemented)
1 4 sepos_object_share() Share an object with a task
1 5 sepos_object_access() Query the access control list of an object
1 6 sepos_object_remap() Remap the physical region of an object x (%)

1 7 sepos_object_share2() Share manifest with task

SEPOS: Object Methods (2/2)
e O I N

1001 sepos_object_object_info() Query object information
1 1002 sepos_object_mapping_info() Query mapping information X
1 1003 sepos_object_proc_info() Query process information X

1 1004 sepos_object_acl_info() Query access control list information X

SEPOS: Thread Methods
N S N

sepos_thread_ create() Create a new thread
2 1 sepos_ thread_kill() Kill a thread (not implemented)
2 2 sepos_thread_set_name() Set a service name for a thread

2 3 sepos_thread_get_info() Get thread information

