
Windows Metafiles
An Analysis of the EMF Attack Surface & Recent Vulnerabilities

Mateusz “j00ru” Jurczyk

Ruxcon, Melbourne 2016

PS> whoami

• Project Zero @ Google

• Low-level security researcher with interest in all sorts of vulnerability

research and software exploitation

• http://j00ru.vexillium.org/

• @j00ru

http://j00ru.vexillium.org/
http://twitter.com/j00ru

Agenda

• Windows Metafile primer, GDI design, attack vectors.

• Hacking:

• Internet Explorer (GDI)

• Windows Kernel (ATMFD.DLL)

• Microsoft Office (GDI+)

• VMware virtualization (Print Spooling)

• Final thoughts.

Windows GDI & Metafile primer

Windows GDI

• GDI stands for Graphics Device Interface.

• Enables user-mode applications to use graphics and formatted text on video

displays and printers.

• Major part of the system API (nearly 300 documented functions).

• Present in the OS since the very beginning (Windows 1.0 released in 1985).

• One of the oldest subsystems, with most of its original code still running 31 years later.

• Concidentally (?) also one of the most buggy components.

How to draw

1. Grab a handle to a Device Context (HDC).

• Identifies a persistent container of various graphical settings (pens, brushes,

palettes etc.).

• Can be used to draw to a screen (most typically), a printer, or a metafile.

• Most trivial example:

HDC hdc = GetDC(NULL);

(obtains a HDC for the entire screen)

How to draw

2. Use a drawing function.

Ellipse(hdc, 100, 100, 500, 300); RoundRect(hdc, 100, 100, 500, 500, 100, 100);

Windows GDI – simplified architecture

app1.exe app3.exe app4.exeapp2.exe

GDI+ (gdiplus.dll)

User-mode GDI (gdi32.dll)

Kernel-mode GDI (win32k.sys)

NT OS Kernel Printer Drivers Font DriversDisplay Drivers

ring-3

ring-0

User to kernel API mappings

Most user-mode GDI functions have their direct counterparts in the

kernel:

GDI32.DLL win32k.sys

AbortDoc NtGdiAbortDoc

AbortPath NtGdiAbortPath

AddFontMemResourceEx NtGdiAddFontMemResourceEx

AddFontResourceW NtGdiAddFontResourceW

AlphaBlend NtGdiAlphaBlend

... ...

Windows Metafiles

Core idea:

Store images as lists of records directly describing GDI calls.

Windows Metafiles

• Pros:

• requires little computation work from the rasterizer itself, as it only has to call GDI functions

with the supplied parameters.

• provides an official way of serializing sets of GDI operations into reproducible images.

• can work as a vector format, raster, or both.

• Cons:

• only works on Windows, unless full implementation of the supported graphical GDI

operations is implemented externally.

First version: WMF

• The original metafiles (WMF = Windows MetaFiles).

• Introduced with Windows 3.0 in 1990.

• Not as ancient as GDI itself, but almost so.

• Initially documented in Windows 3.1 SDK (1994, volume 4).

• A revised, more complete specification was released in 2006, and has been

maintained since then.

• A description of all records and structures can be found in the MS-WMF document.

WMF files – 60 supported API functions

AnimatePaletteArc
BitBlt
Chord
CreateBrushIndirect
CreateDIBPatternBrush
CreateFontIndirect
CreatePalette
CreatePatternBrush
CreatePenIndirect
DeleteObject
Ellipse
Escape
ExcludeClipRect
ExtFloodFill
ExtTextOut
FillRgn
FloodFill
FrameRgn
IntersectClipRect
InvertRgn

LineToMoveToEx
OffsetClipRgn
OffsetViewportOrgEx
OffsetWindowOrgEx
PaintRgn
PatBlt
Pie
Polygon
Polyline
PolyPolygon
RealizePalette
Rectangle
ResizePalette
RestoreDC
RoundRect
SaveDC
ScaleViewportExtEx
ScaleWindowExtEx
SelectClipRgn
SelectObject

SelectPaletteSetBkColor
SetBkMode
SetDIBitsToDevice
SetMapMode
SetMapperFlags
SetPaletteEntries
SetPixel
SetPolyFillMode
SetROP2
SetStretchBltMode
SetTextAlign
SetTextCharacterExtra
SetTextColor
SetTextJustification
SetViewportOrgEx
SetWindowExtEx
SetWindowOrgEx
StretchBlt
StretchDIBits
TextOut

Some seemingly interesting ones

AnimatePaletteArc
BitBlt
Chord
CreateBrushIndirect
CreateDIBPatternBrush
CreateFontIndirect
CreatePalette
CreatePatternBrush
CreatePenIndirect
DeleteObject
Ellipse
Escape
ExcludeClipRect
ExtFloodFill
ExtTextOut
FillRgn
FloodFill
FrameRgn
IntersectClipRect
InvertRgn

LineToMoveToEx
OffsetClipRgn
OffsetViewportOrgEx
OffsetWindowOrgEx
PaintRgn
PatBlt
Pie
Polygon
Polyline
PolyPolygon
RealizePalette
Rectangle
ResizePalette
RestoreDC
RoundRect
SaveDC
ScaleViewportExtEx
ScaleWindowExtEx
SelectClipRgn
SelectObject

SelectPaletteSetBkColor
SetBkMode
SetDIBitsToDevice
SetMapMode
SetMapperFlags
SetPaletteEntries
SetPixel
SetPolyFillMode
SetROP2
SetStretchBltMode
SetTextAlign
SetTextCharacterExtra
SetTextColor
SetTextJustification
SetViewportOrgEx
SetWindowExtEx
SetWindowOrgEx
StretchBlt
StretchDIBits
TextOut

WMF: there’s more!

• The format also supports a number of records which do not directly

correspond to GDI functions.

• Header with metadata.

• Embedded EMF.

• Records directly interacting with the printer driver / output device.

• End-of-file marker.

• ...

WMF: there’s more!

• Generally, the most interesting records can be found in two sections:

Windows Metafile – example

...

R0003: [017] META_SETMAPMODE (s=12) {iMode(8=MM_ANISOTROPIC)}

R0004: [011] META_SETVIEWPORTEXTEX (s=16) {szlExtent(1920,1200)}

R0005: [009] META_SETWINDOWEXTEX (s=16) {szlExtent(1920,1200)}

R0006: [010] META_SETWINDOWORGEX (s=16) {ptlOrigin(-3972,4230)}

R0007: [009] META_SETWINDOWEXTEX (s=16) {szlExtent(7921,-8462)}

R0008: [049] META_CREATEPALETTE (s=960) {ihPal(1) LOGPAL[ver:768, entries:236]}

R0009: [048] META_SELECTPALETTE (s=12) {ihPal(Table object: 1)}

R0010: [052] META_REALIZEPALETTE (s=8)

R0011: [039] META_CREATEBRUSHINDIRECT (s=24) {ihBrush(2), style(0=BS_SOLID, color:0x00FFFFFF)}

R0012: [037] META_SELECTOBJECT (s=12) {Table object: 2=OBJ_BRUSH.(BS_SOLID)}

R0013: [037] META_SELECTOBJECT (s=12) {Stock object: 8=OBJ_PEN.(PS_NULL)}

R0014: [019] META_SETPOLYFILLMODE (s=12) {iMode(1=ALTERNATE)}

R0015: [086] META_POLYGON16 (s=320) {rclBounds(89,443,237,548), nbPoints:73, P1(-2993,398) - Pn(-2993,398)}

R0016: [038] META_CREATEPEN (s=28) {ihPen(3), style(0=PS_SOLID | COSMETIC), width(0), color(0x00000000)}

...

WMF: still very obsolete

• Even though already quite complex, the format didn’t turn out to be

very well thought-out for modern usage.

• It’s still supported by GDI, and therefore some of its clients (e.g.

Microsoft Office, Paint, some default Windows apps).

• Has been basically forgotten in any real-world use-cases for the last

decade or more.

WMF: discouraged from use

• Even Microsoft gives a lot of reasons not to use it anymore:

Next up: EMF (Enhanced MetaFiles)

• Already in 1993, Microsoft released an improved revision of the image

format, called EMF.

• Documented in the official MS-EMF specification.

• Surpasses WMF in a multitude of ways:

• uses 32-bit data/offset width, as opposed to just 16 bits.

• device independent.

• supports a number of new GDI calls, while maintaining backward compatibility with

old records.

Enhanced Metafile – example

...
R0121: [039] EMR_CREATEBRUSHINDIRECT (s=24) {ihBrush(2), style(1=BS_NULL)}
R0122: [037] EMR_SELECTOBJECT (s=12) {Table object: 2=OBJ_BRUSH.(BS_NULL)}
R0123: [040] EMR_DELETEOBJECT (s=12) {ihObject(1)}
R0124: [090] EMR_POLYPOLYLINE16 (s=44) {rclBounds(128,-256,130,-254), nPolys:1, nbPoints:2, P1(386,-765) - Pn(386,-
765)}
R0125: [019] EMR_SETPOLYFILLMODE (s=12) {iMode(1=ALTERNATE)}
R0126: [039] EMR_CREATEBRUSHINDIRECT (s=24) {ihBrush(1), style(0=BS_SOLID, color:0x00A86508)}
R0127: [037] EMR_SELECTOBJECT (s=12) {Table object: 1=OBJ_BRUSH.(BS_SOLID)}
R0128: [040] EMR_DELETEOBJECT (s=12) {ihObject(2)}
R0129: [058] EMR_SETMITERLIMIT (s=12) {Limit:0.000}
R0130: [091] EMR_POLYPOLYGON16 (s=60) {rclBounds(127,-259,138,-251), nPolys:1, nbPoints:6, P1(384,-765) - Pn(384,-
765)}
R0131: [040] EMR_DELETEOBJECT (s=12) {ihObject(1)}
R0132: [040] EMR_DELETEOBJECT (s=12) {ihObject(3)}
R0133: [014] EMR_EOF (s=20) {nPalEntries:0, offPalEntries:16, nSizeLast:20}
...

EMF: interesting records at first glance

EMF: interesting records at first glance

EMF: interesting records at first glance

EMF: current support

• Despite being only 3 years younger than WMF, EMF has remained in

current usage until today.

• Not as a mainstream image format, but still a valid attack vector.

• A variety of attack vectors:

• Win32 GDI clients – most notably Internet Explorer.

• GDI+ clients – most notably Microsoft Office.

• Printer drivers, including those used in virtualization technology.

Toolset – examination (EMFexplorer)

Toolset – examination (MetafileExplorer)

Toolset – reading & writing (pyemf)

#!/usr/bin/env python
import os
import pyemf
import sys

def main(argv):
if len(argv) != 2:

print "Usage: %s /path/to/poc.emf" % argv[0]
sys.exit(1)

emf = pyemf.EMF(width = 100, height = 100, density = 1)
emf.CreateSolidBrush(0x00ff00)
emf.SelectObject(1)
emf.Polygon([(0, 0), (0, 100), (100, 100), (100, 0)])

emf.save(argv[1])

if __name__ == "__main__":
main(sys.argv)

The latest: EMF+

• GDI had all the fundamental primitives, but lacked many complex features

(anti-aliasing, floating point coords, support for JPEG/PNG etc.).

• Windows XP introduced a more advanced library called GDI+ in 2001.

• Built as a user-mode gdiplus.dll library, mostly on top of regular GDI (gdi32.dll).

• Provides high-level interfaces for C++ and .NET, therefore is much easier to use.

• GDI+ itself is written in C++, so all the typical memory corruption bugs still apply.

The latest: EMF+

• Since there is a new interface, there must also be a new image format with its

serialized calls.

• Say hi to EMF+!

• Basically same as EMF, but representing GDI+ calls.

• Come in two flavours: EMF+ Only and EMF+ Dual.

• „Only” contains exclusively GDI+ records, and can only be displayed with GDI+.

• „Dual” stores the picture with two sets of records, compatible with both GDI/GDI+ clients.

Formats and implementations in Windows

• Three formats in total to consider: WMF, EMF, EMF+.

• Three libraries: GDI, GDI+ and MF3216.

• MF3216.DLL is a system library with just one meaningful exported function:

ConvertEmfToWmf.

• Used for the automatic conversion between WMF/EMF formats in the Windows

clipboard.

• „Synthesized” formats CF_METAFILEPICT and CF_ENHMETAFILE.

• No bugs found there.

Formats and implementations in Windows

Library Supported formats

GDI WMF, EMF

GDI+ WMF, EMF, EMF+

MF3216 EMF

In this talk, we’ll focus on auditing and exploiting the EMF parts, as this

is where the most (interesting) issues were discovered.

Attack scenario

• In all cases, Metafiles are processed in the user-mode context of the renderer process, in the

corresponding DLL.

• GDI, GDI+ and MF3216 iterate through all input records and translate them into GDI/GDI+ calls.

• Memory corruption bugs will result in arbitrary code execution in that context.

• Important: Metafiles directly operate on the GDI context of the renderer.

• Can create, delete, change and use various GDI objects on behalf of the process.

• In theory, it should only have access to its own objects and be self-contained.

• However, any bugs in the implementation could enable access to external graphics objects used by the

program.

• A peculiar case of „privilege escalation”.

Attack scenario: GDI context priv. escal.

renderer.exe GDI objects EMF #2 GDI objects EMF #3 GDI objects

EMF #1 file

EMF #1 GDI objects

process GDI context

EMF #2 file EMF #3 file

security boundaries

Attack scenario: GDI context priv. escal.

renderer.exe GDI objects EMF #2 GDI objects EMF #3 GDI objects

EMF #1 file

EMF #1 GDI objects

process GDI context

security boundaries

Types of Metafile bugs

1. Memory corruption bugs

• Buffer overflows etc. due to mishandling specific records.

• Potentially exploitable in any type of renderer.

• Impact: typically RCE.

2. Memory disclosure bugs

• Rendering uninitialized or out-of-bounds heap memory as image pixels.

• Exploitable only in contexts where displayed images can be read back (web browsers, remote renderers).

• Impact: information disclosure (stealing secret information, defeating ASLR etc.).

3. Invalid interaction with the OS and GDI object mismanagement.

• Impact, exploitability = ???, depending on the specific nature of the bug.

Let’s get started!

• Earlier this year, I started manually auditing the available EMF implementations.

• This has resulted in 10 CVEs from Microsoft and 3 CVEs from VMware (covering

several dozen of actual bugs).

• Let’s look into the root causes and exploitation of the most interesting ones.

• Examples are shown based on Windows 7 32-bit, but most of the research applies to both

bitnesses and versions up to Windows 10.

Auditing GDI

Getting started

• To get some general idea of where the functionality in question is

implemented and what types of bugs were found in the past, it makes

sense to check prior art.

• A „wmf vulnerability” query yields just one result:

the SetAbortProc bug!

SetAbortProc WMF bug (CVE-2005-4560)

• Discovered on December 27, 2005. Fixed on January 5, 2006.

• Critical bug, allowed 100% reliable RCE while using GDI to display the

exploit (e.g. in Internet Explorer).

• Called „Windows Metafile vulnerability”, won Pwnie Award 2007.

• No memory corruption involved, only documented features of WMF.

• So what was the bug?

The GDI API...

function pointer

... and the WMF counterpart

In essence...

... the format itself supported calling:

SetAbortProc(hdc, (ABORTPROC)"controlled data");

and having the function pointer called afterwards.

Code execution by design.

Lessons learned

1. The format may (un)officially proxy calls to interesting / dangerous

API calls, so the semantics of each function and its parameters

should be checked for unsafe behavior.

2. The handling of WMF takes place in a giant switch/case in

gdi32!PlayMetaFileRecord.

What about EMF bugs?

• Searching for „emf vulnerability” yields more diverse results.

• Most recent one: „Yet Another Windows GDI Story” by Hossein Lofti.

• Fixed in April 2015 as part of MS15-035, assigned CVE-2015-1645.

• A heap-based buffer overflow due to an unchecked assumption about an

input „size” field in one of the records (SETDIBITSTODEVICE).

• In large part an inspiration to start looking into EMF security myself.

Lessons learned

• Main function for playing EMF records is

gdi32!PlayEnhMetaFileRecord.

• Each record type has its own class with two methods:

• ::bCheckRecord() – checks the internal integrity and correctness of the

record.

• ::bPlay() – performs the actions indicated in the record.

GDI32 ::bCheckRecord array

GDI32 ::bPlay array

That’s a starting point.

Impact: File Existence Information Disclosure

Record:
EMR_CREATECOLORSPACE,

EMR_CREATECOLORSPACEW

Exploitable in: Internet Explorer

CVE: CVE-2016-0168

google-security-research entry: 722

Fixed: MS16-055, 10 May 2016

CVE-2016-0168

Minor bug #1 in EMR_CREATECOLORSPACEW

• The quality of the code can be immediately recognized by observing many small, but

obvious bugs.

• MRCREATECOLORSPACEW::bCheckRecord() checks that the size of the record is ≥ 0x50

bytes long:

.text:7DB01AEF mov eax, [esi+4]

.text:7DB01AF2 cmp eax, 50h

.text:7DB01AF5 jb short loc_7DB01B1E

• Then immediately proceeds to read a .cbData field at offset 0x25C:

.text:7DB01AF7 mov ecx, [esi+25Ch]

• Result: out-of-bounds read by 0x20C bytes.

Minor bug #2 in EMR_CREATECOLORSPACEW

• Then, the .cbData from invalid offset 0x25C is used to verify the record

length:
.text:7DB01AF7 mov ecx, [esi+25Ch]

.text:7DB01AFD add ecx, 263h

.text:7DB01B03 and ecx, 0FFFFFFFCh

.text:7DB01B06 cmp eax, ecx

.text:7DB01B08 ja short loc_7DB01B1E

• The above translates to:
if (... && record.length <= ((record->cbData + 0x263) & ~3) && ...) {

// Record valid.

}

Minor bug #2 in EMR_CREATECOLORSPACEW

• Two issues here:

1. Obvious integer overflow making a large .cbData pass the check.

2. Why would the record length be smaller then the data declared within? It

should be larger!

• It all doesn’t matter anyway, since the data is not used in any further
processing.

Minor bug #3 in EMR_CREATECOLORSPACEW

• The .lcsFilename buffer of the user-defined LOGCOLORSPACEW

structure is not verified to be nul-terminated.

• May lead to out-of-bound reads while accessing the string.

• As clearly visible, there are lots of unchecked assumptions in the

implementation, even though only minor so far.

• Keeps our hopes up for something more severe.

The file existence disclosure

• Back to the functionality of EMR_CREATECOLORSPACE[W] records: all they

do is call CreateColorSpace[W] with a fully controlled LOGCOLORSPACE

structure:
typedef struct tagLOGCOLORSPACE {

DWORD lcsSignature;
DWORD lcsVersion;
DWORD lcsSize;
LCSCSTYPE lcsCSType;
LCSGAMUTMATCH lcsIntent;
CIEXYZTRIPLE lcsEndpoints;
DWORD lcsGammaRed;
DWORD lcsGammaGreen;
DWORD lcsGammaBlue;
TCHAR lcsFilename[MAX_PATH];

} LOGCOLORSPACE, *LPLOGCOLORSPACE;

Inside CreateColorSpaceW

• The function builds a color profile file path using internal

gdi32!BuildIcmProfilePath.

• if the provided filename is relative, it is appended to a system directory path.

• otherwise, absolute paths are left as-is.

• All paths are accepted, except for those starting with two "/" or "\" characters:

if ((pszSrc[0] == '\\' || pszSrc[0] == '/') &&
(pszSrc[1] == '\\' || pszSrc[1] == '/')) {

// Path denied.
}

Inside CreateColorSpaceW

• This is supposedly to prevent specifying remote UNC paths starting

with the "\\" prefix, e.g. \\192.168.1.13\C\Users\test\profile.icc.

• However, James Forshaw noted that this check is not effective, as the

prefix can be also represented as "\??\UNC\".

• The check is easily bypassable with:

\??\UNC\192.168.1.13\C\Users\test\profile.icc

CreateColorSpaceInternalW: last step

• After the path is formed, but before invoking the NtGdiCreateColorSpace

system call, the function opens the file and immediately closes it to see if it exists:

HANDLE hFile = CreateFileW(&FileName, GENERIC_READ, FILE_SHARE_READ, 0,

OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, 0);

if (hFile == INVALID_HANDLE_VALUE) {

GdiSetLastError(2016);

return 0;

}

CloseHandle(hFile);

Consequences

• In result, we can have CreateFileW() called over any chosen path.

• If it succeeds, the color space object is created and the function returns

success.

• If it fails, the GDI object is not created and the handler returns failure.

• Sounds like information disclosure potential.

• How do we approach exploitation e.g. in Internet Explorer?

Intuitive way: leaking the return value

• Since the return value of CreateFileW() determines the success of

the record processing, we could maybe leak this bit?

• Initial idea: use EMR_CREATECOLORSPACE as the first record, followed by a

drawing operation.

• If the drawing is never executed (which can be determined with the <canvas>

tag), the call failed.

Intuitive way: leaking the return value

• Unfortunately impossible.

• The gdi32!_bInternalPlayEMF function (called by PlayEnhMetaFile

itself) doesn’t abort image processing when one record fails.

• A „success” flag is set to FALSE, and the function proceeds to further operations.

• All records are always executed, and the return value is a flag indicating if

at least one of the records failed during the process.

Can’t we leak the final return value?

• No, not really.

• The return value of PlayEnhMetaFile is discarded by Internet

Explorer in mshtml!CImgTaskEmf::Decode:

.text:64162B49 call ds:__imp__PlayEnhMetaFile@12

.text:64162B4F or dword ptr [ebx+7Ch], 0FFFFFFFFh

.text:64162B53 lea eax, [esp+4C8h+var_49C]

Other disclosure options

• The other indicator could be the creation of a color space object via

NtGdiCreateColorSpace.

• Leaking it directly is not easy (if at all possible), but maybe there is

some side channel?

Using the GDI object limit

• Every process in Windows is limited to max. 10,000 GDI objects by default.

• The number can be adjusted in the registry, but isn’t for IE.

• If we use 10,000 EMR_CREATECOLORSPACEW records with the file path we want to

check, then:

• If the file exists, we’ll have 10,000 color space objects, reaching the per-process limit.

• If it doesn’t, we won’t have any color spaces at all.

• We’re now either at the limit, or not. If we then create a brush (one more object) and try

to paint, then:

• If the file exists, the brush creation will fail and the default brush will be used.

• If it doesn’t, the brush will be created and used for paiting.

GDI object limit as oracle illustrated

Bitmap

Font

Palette

Color space

Color space
Color space

Color space

...

Color space

Color space

Color space

Color space

Color space
Color space
Color space

Limit

Brush

Brush

Bitmap

Font

Palette

Brush

Brush

File exists: File doesn’t exist:

DEMO

Vulnerability impact

• Arbitrary file existence disclosure, useful for many purposes:

• Recognizing specific software (and versions) that the user has installed, for

targetted attacks.

• Tracking users (by creating profiles based on existing files).

• Tracking the opening times of offline documents (e.g. each opening in

Microsoft Office could trigger a ping to remote server via SMB).

• Blindly scanning network shares available to the user.

Impact: Memory disclosure

Record: Multiple records (10)

Exploitable in: Internet Explorer

CVE: CVE-2016-3216

google-security-research entry: 757

Fixed: MS16-074, 14 June 2016

CVE-2016-3216

Device Independent Bitmaps (DIBs)

In Windows GDI, raster bitmaps are

usually stored in memory in the form of

DIBs:

• Short header containing basic metadata

about the image, followed by optional

palette.

• The image data itself.

BITMAPINFO

BITMAPINFOHEADER

RGBQUAD
bmiColors[...];

Bitmap data

11142211142211142
21114221114221114
22111422111422111
42211142211142211
14221114221114221
11422111422101321
10132110132110132
11013211013211013
211013210F12200F1
2200F12200F12200F
12200F12200F12200

.BMP files are just DIBs, too.

BITMAPINFO

BITMAPINFOHEADER

RGBQUAD
bmiColors[...];

Bitmap data

11142211142211142
21114221114221114
22111422111422111
42211142211142211
14221114221114221
11422111422101321
10132110132110132
11013211013211013
211013210F12200F1
2200F12200F12200F
12200F12200F12200

BITMAPFILEHEADER

typedef struct tagBITMAPFILEHEADER {
WORD bfType;
DWORD bfSize;
WORD bfReserved1;
WORD bfReserved2;
DWORD bfOffBits;

} BITMAPFILEHEADER;

bfOffBits

BITMAPINFOHEADER, the trivial header

typedef struct tagBITMAPINFOHEADER {

DWORD biSize;

LONG biWidth;

LONG biHeight;

WORD biPlanes;

WORD biBitCount;

DWORD biCompression;

DWORD biSizeImage;

LONG biXPelsPerMeter;

LONG biYPelsPerMeter;

DWORD biClrUsed;

DWORD biClrImportant;

} BITMAPINFOHEADER;

• Short and simple structure.

• 40 bytes in length (in typical

form).

• Only 8 meaningful fields.

Is it really so trivial to handle?

• biSize needs to be sanitized (can only be a few valid values).

• biWidth, biHeight, biPlanes, biBitCount can cause integer overflows (often

multiplied wieh each other).

• biHeight can be negative to indicate bottom-up bitmap.

• biPlanes must be 1.

• biBitCount must be one of {1, 2, 4, 8, 16, 24, 32}.

• For biBitCount < 16, a color palette can be used.

• The size of the color palette is also influenced by biClrUsed.

Is it really so trivial to handle?

• biCompression can be BI_RGB, BI_RLE8, BI_RLE4, BI_BITFIELDS, ...

• Each compression scheme must be handled correctly.

• biSizeImage must correspond to the actual image size.

• The palette must be sufficiently large to contain all entries.

• The pixel data buffer must be sufficiently large to describe all pixels.

• Encoded pixels must correspond to the values in header (e.g. not exceed

the palette size etc.).

Many potential problems

1. The decision tree for correctly handling a DIB based on its header is

very complex.

2. Lots of corner cases to cover and implementation bugs to avoid.

3. A consistent handling across various parts of code is required.

GDI functions operating on DIB (directly)

pointer to image data

pointer to DIB header

GDI functions operating on DIB (indirectly)

Data sanitization responsibility

• In all cases, it is the API caller’s resposibility to make sure the headers

and data are correct and adequate.

• Passing in fully user-controlled input data is somewhat problematic,

as the application code would have to „clone” GDI’s DIB handling.

• Guess what? EMF supports multiple records which contain embedded

DIBs.

EMF records containing DIBs

• EMR_ALPHABLEND
• EMR_BITBLT
• EMR_MASKBLT
• EMR_PLGBLT
• EMR_STRETCHBLT
• EMR_TRANSPARENTBLT
• EMR_SETDIBITSTODEVICE
• EMR_STRETCHDIBITS
• EMR_CREATEMONOBRUSH
• EMR_EXTCREATEPEN

The common scheme

• Two pairs of (offset, size) for both the header and the bitmap:

Necessary checks in the EMF record handlers

• In each handler dealing with DIBs, there are four necessary

consistency checks:

1. cbBmiSrc is adequately large for the header to fit in.

2. (offBmiSrc, offBmiSrc + cbBmiSrc) resides fully within the record.

3. cbBitsSrc is adequately large for the bitmap data to fit in.

4. (offBitsSrc, offBitsSrc + cbBitsSrc) resides fully within the record.

Checks were missing in many combinations

Record handlers Missing checks

MRALPHABLEND::bPlay
MRBITBLT::bPlay
MRMASKBLT::bPlay
MRPLGBLT::bPlay
MRSTRETCHBLT::bPlay
MRTRANSPARENTBLT::bPlay

#1, #2

MRSETDIBITSTODEVICE::bPlay #3

MRSTRETCHDIBITS::bPlay #1, #3

MRSTRETCHDIBITS::bPlay
MRCREATEMONOBRUSH::bPlay
MREXTCREATEPEN::bPlay

#1, #2, #3, #4

* This was just after a cursory look; Microsoft might have fixed more.

The consequence

• Due to missing checks, parts of the image description could be loaded from

other parts of the process address space (e.g. adjacent heap allocations):

• DIB header

• Color palette

• Pixel data

• Uninitialized or out-of-bound heap memory could be disclosed with the

palette or pixel data.

Proof of concept

• I hacked up a PoC file with an EMR_STRETCHBLT record, containing an 8-bpp DIB with palette

entries going beyond the file.

• Result: garbage bytes being displayed as image pixels.

• The same picture being displayed three times in a row in IE:

• The data can be read back using HTML5, in order to leak module addresses and other sensitive

data.

DEMO

Auditing ATMFD.DLL

Looking further into the list of EMF records

NamedEscape?

• DrawEscape() and ExtEscape() are both documented functions.

• They are also pretty well explored and researched.

• What’s NamedEscape()?

• The function is exported from gdi32.dll.

• However, no documentation is provided by Microsoft.

• Internally, it is a simple wrapper for win32k!NtGdiExtEscape, the same syscall

that Escape() and ExtEscape() use.

• Passes along two input arguments which are otherwise set to 0.

What do the specs say?

Sending data to a driver by name

• In [Ext]Escape(), the driver is identified by the HDC.

• Here, we can directly specify the driver’s name!

• The interface is similar to IOCTLs.

• Escape code (32-bit value).

• Input buffer of controlled size.

• Output buffer of controlled size (missing from EMR_NAMEDESCAPE).

• What is the actual attack surface?

• Let’s search online for „NamedEscape”.

First result

Hacking Team ATMFD.DLL 0-day

• Discovered in the leaked data dump on July 7, 2015.

• Fixed by Microsoft on July 14 (MS15-077, CVE-2015-2387).

• Local privilege escalation to ring-0 through vulnerable ATMFD.DLL.

• Bug triggered through NamedEscape("ATMFD.DLL", 0x2514).

• Also used in the exploit: NamedEscape("ATMFD.DLL", 0x250A).

• Hey, I know this driver!

NamedEscape + ATMFD

• ATMFD.DLL is a very special case for the NamedEscape interface.

• It is one of a few, or perhaps the only driver using this interface for communication.

• It is even specifically checked for in the win32k!GreNamedEscape function:

.text:BF9DC326 cmp esi, PDEV * gppdevATMFD

.text:BF9DC32C jnz short loc_BF9DC33F

.text:BF9DC32E push offset aAtmfd_dll ; "atmfd.dll"

.text:BF9DC333 push ebx ; wchar_t *

.text:BF9DC334 call __wcsicmp

Finding the handler function

• Locating the escape function within ATMFD.DLL is easy.

• Just search for some magic values – e.g. 0x2514 – in (hex)decimal in IDA Pro

or Hex-Rays.

• You’ll find it right away.

• In case of the latest Windows 7 32-bit, the address is 0x14654.

A broad control flow graph

What do we learn?

• 13 escape codes supported, each expecting a specific input length:

Escape code Input data length

0x2502 0

0x2509 194

0x250A 12

0x250B 194

0x250C 48

0x250D >88

0x250E 1656

0x250F 0

0x2510 6

0x2511 32

0x2512 1124

0x2513 148

0x2514 ≥6

Analysis was difficult

• Sure we know the escape codes and input data sizes, but:

• No debug symbols are available, so no function names, structures, data types etc.

• Unknown functionality of the codes.

• Unknown format of input and output data.

• Unknown internal structures.

• No public documentation available.

• Not the most convenient target to look into (very high entry bar).

• Intended to have a deeper look in 2015, but got distracted and gave up.

Giving it another shot

• When I noticed that the functionality was also reachable from within

EMF in 2016, I decided to give it another shot.

• Web browser ring-0 execution potential?

• Let’s see what other system modules use the NamedEscape()

function!

ATMLIB.DLL?

The missing part of ATM

• Part of the Adobe Type Manager suite.

• Family of computer programs for rasterizing PostScript fonts (Type 1 and OpenType).

• Ported to Windows (3.0, 3.1, 95, 98, Me) by patching into the OS at a very low level.

• First officially incorporated into Windows in NT 4.0.

• ATMFD.DLL is the kernel-mode font driver.

• ATMLIB.DLL is the user-mode counterpart, which provides the ATM API to client

applications.

Best part about ATMLIB.DLL?

• Debug symbols available from the Microsoft servers!

Reverse engineering escape codes

Name Escape code Input data length

ATMProperlyLoaded 0x2502 0

ATMBeginFontChange 0x2503 0

ATMEndFontChange 0x2506 0

ATMFontAvailable, ATMGetPostScriptName 0x2509 194

ATMGetFontBBox 0x250A 12

ATMGetMenuName 0x250B 194

ATMGetGlyphName 0x250C 48

ATMMakePFM 0x250D >88

ATMGetFontPaths 0x250E 1656

ATMGetVersion 0x250F 0

ATMSetFlags 0x2510 6

? 0x2511 32

? 0x2512 1124

ATMGetNtmFields 0x2513 148

ATMGetGlyphList 0x2514 ≥6

ATMLIB & ATMFD

ATMLIB only

ATMFD only

Googling for the symbol names…

• We can find three extremely interesting documents:

1. Adobe Type Manager Software API With Multiple Master Fonts: Macintosh,

Technical Note #5074, 14 February 1992, Adobe Systems Incorporated

2. Adobe Type Manager Software API: Windows, Technical Note #5073,

24 January 1997, Adobe Systems Incorporated

3. Adobe Type Manager® Software API for Windows® 95 and Windows NT® 4,

Technical Note #5642, 26 June 1998, Adobe Systems Incorporated

From there…

• Function declarations.

• Structure definitions.

• Constant and enumeration names.

• Overall overview of various ATM mechanics.

From there… (functions)

From there… (structures)

From there… (constants)

Reverse engineering the escape handlers

• With all this, analysis of relevant ATMFD functions becomes much easier.

• Operation names are roughly known, and they carry information about the escape’s

functionality.

• Some structures are fully known, other can be recovered through RE of ATMLIB.DLL.

• The semantics of ATMFD’s return values and other enums are much clearer now.

• We can directly call ATMLIB.DLL functions and do run-time debugging.

• Some strings in ATMFD.DLL can be helpful, as well.

Let’s manually audit all 13 escape codes implemented

in ATMFD.

Impact: Out-of-bound read

Escape code 0x2511

CVE: None

google-security-research entry: 781

Fixed: WontFix

GPZ #781

Escape code 0x2511

• The escape code is not referenced in ATMLIB.

• Unknown name or functionality.

• Required input buffer size is 32 bytes:

case 0x2511:
if (cbInput == 32) {
ret = ATMUnspecifiedScramble(lpBuffer);
goto label_return;

}
break;

ATMUnspecifiedScramble

• Doesn’t operate on any font objects, only the input data.

• The input structure can be reverse engineered to the following:

struct ATM_2511_input {
DWORD dword_0;
DWORD dword_4;
DWORD dword_8;
WORD word_C;
WORD padding;
DWORD dwords_10[4];

};

Unknown logic

if (input->dword_0 <= 1) {
if (input->dword_8 == 0) {

DWORD value = GetUnspecifiedScrambledValue();
global_dword_1 = input->dword_8 = value;

}
if (global_dword_1 != 0) {

if (input->word_C > 32) {
input->word_C = 32;

}
for (WORD i = 0; i < input->word_C; i++) {
DWORD value = Scramble(input->dwords_10[i], global_dword_1);
if (global_dwords_2[i] == 0) {

global_dwords_2[i] = value;
}
global_bools_3[i] = global_dwords_2[i] != value;

}
global_dword_1 = 0;

}
}

Unknown logic

• GetUnspecifiedScrambledValue() transforms a static 32-bit integer with

logic/arithmetic operations and returns it.

• Scramble(x, y) combines two 32-bit integers into one and returns it.

• The purpose of the logic is undetermined, but also irrelevant.

• Have you noticed that:

• The dwords_10 array at the end of the structure only has 4 elements (enforced by the

required size of the structure).

• The function makes it possible to operate on up to 32 elements of the table!

Out-of-bounds read access

• Accesses to input->dwords_10[4..31] are all invalid.

• That’s an overread by as much as 28 × 4 = 112 bytes!

• Not particularly useful, could cause a DoS by crashing the kernel.

• But… remember that the NamedEscape surface is available through EMF?

• The ring-0 out-of-bounds access could be triggered remotely, e.g. through Internet

Explorer or Microsoft Office.

Something’s wrong…

• When trying to repro this through IE, I reached the affected code, triggered

the out-of-bounds access, but never got a system crash!

• Even with Special Pools enabled.

• What’s up? Wasn’t the pool allocation supposed to end up near the end of

a page boundary at least once?

• It turned out that the input buffer was not on the pools, but kernel stack!

Where does the buffer come from?

• Let’s look into win32k!NtGdiExtEscape, the top-level handler of the system call:

.text:BF822691 loc_BF822691:

.text:BF822691 lea eax, [ebp+var_3C]

.text:BF822694 mov [ebp+input_buffer], eax

…

.text:BFAB95AD cmp esi, 32

.text:BFAB95B0 jle loc_BF822691

.text:BFAB95B6 cmp esi, 2710000h

.text:BFAB95BC jg short loc_BFAB95D2

.text:BFAB95BE push 706D7447h ; Tag

.text:BFAB95C3 push esi ; NumberOfBytes

.text:BFAB95C4 push 21h ; PoolType

.text:BFAB95C6 call ds:__imp__ExAllocatePoolWithTag@12

.text:BFAB95CC mov [ebp+input_buffer], eax

In C:

if (NumberOfBytes > 32) {

lpBuffer = ExAllocatePoolWithTag(...);

} else {

lpBuffer = &local_buffer;

}

Close, but no cigar

• The input buffer size must be exactly 32 bytes.

• For all sizes ≤ 32 bytes, a local buffer is used for storage.

• Performance optimization.

• There are always more than 112 bytes (being overread) of stack memory

after the local buffer.

• Higher level stack frames, KTRAP_FRAME, padding etc.

• Due to this extremely unfortunate coincident, a kernel crash may never occur.

Local information disclosure?

• As the out-of-bounds values are persistently stored (in some form) by ATMFD, it could be possible

to extract them back to user-mode.

• Only in a local scenario.

• Not trivial, if at all possible:

• The values are severely mangled before being saved.

• There is no obvious route to reading them back through the available interfaces.

• Microsoft classified the issue as WontFix.

• Non-exploitable by pure accident, but the bug is still there and could become exploitable if conditions change.

• A great example of some very obscure functionality included in the ATMFD escape interface.

Impact: Pool-based buffer overflow

Escape code 0x250C

CVE: CVE-2016-3220

google-security-research entry: 785

Fixed: MS16-074, 14 June 2016

CVE-2016-3220

ATMGetGlyphName()

• Not an official symbol, but a name assigned based on analysis of

ATMLIB.

• Basic facts (on x86):

• The input buffer size is enforced to be 48 bytes.

• As the name implies, the function operates on a specific font object, and

returns the name of one of its glyphs.

• The font is identified by its kernel-mode address, placed at offset 4.

Say what?

• A user-mode client identifies a font object with a kernel-mode

address.

• Legacy mechanism, implemented as an optimization or to simplify the

overall code logic.

• How does the client know the address?

Obtaining font kernel address

PVOID address;

GetFontData(hdc, 'ebdA', 0, &address, sizeof(PVOID));

GetFontData()

• The function is used to read data from specific SFNT tables of the DC’s font file.

• cmap, head, hhea, hmtx, maxp, etc.

• „ebdA” (backwards for „Adbe”) is a magic table ID, separately handled by ATMFD.

• If the special ID is used and the size of the request is the length of the native

word, the kernel-mode font address is returned instead of actual font data.

• Kernel ASLR bypass by design.

Back on the subject

• The control flow of the escape code handler is deep and complex.

• Let’s examine each stage of execution respectively.

ATMGetGlyphName() step by step #1

1. The i/o buffer size is enforced to be 48 bytes.

2. The font object is located based on the kernel-mode address passed by

the client.

3. The font file contents are mapped into memory (?).

4. The function checks if it’s a Type 1 or OpenType font.

• The Type 1 implementation is not particularly interesting, let’s follow the OTF one.

ATMGetGlyphName() step by step #2

5. A function is called with a controlled 16-bit glyph index and a

pointer to offset 8 of the i/o buffer (to copy the name there).

• Let’s name it FormatOpenTypeGlyphName().

6. To retrieve the actual glyph name from the .OTF file, another

function is used, let’s call it GetOpenTypeGlyphName().

• Here’s where the interesting stuff happens.

GetOpenTypeGlyphName()

• If the glyph ID is between 0 and 390, the name is obtained from a

hard-coded list of names:

GetOpenTypeGlyphName()

• Otherwise, the name is extracted from the .OTF file itself, by reading

from the Name INDEX.

• String arrays are represented with a list of offsets of consecutive

strings.

• The length of each entry can be determined by subtracting the offset of N+1

and N.

Name INDEX structure

Type Name Description

Card16 count Number of objects stored in INDEX

OffSize offSize Offset array element size

Offset offset [count+1] Offset array (from byte preceding object data)

Card8 data[<varies>] Object data

GetOpenTypeGlyphName() pseudo-code

PushMarkerToStack();

int glyph_name_offset = ReadCFFEntryOffset(glyph_id);

int next_glyph_name_offset = ReadCFFEntryOffset(glyph_id + 1);

*pNameLength = next_glyph_name_offset - glyph_name_offset;

EnsureBytesAreAvailable(next_glyph_name_offset - glyph_name_offset);

PopMarkerFromStack();

Internal font stack

• Each font object has an internal array of 16 elements, each 32-bit

wide.

• ATMFD debug messages can help us understand their meaning:

"fSetPriv->HeldDataKeys[fSetPriv->nHeldDataKeys-1] == MARK"

"fSetPriv->nHeldDataKeys >= 0"

"fSetPriv->nHeldDataKeys > 0"

"fSetPriv->nHeldDataKeys < MAXHELDDATAKEYS"

Internal font stack

• The stack is internally called HeldDataKeys.

• The element counter is nHeldDataKeys.

• MAXHELDDATAKEYS equals 16.

• A special marker value of -1 is called MARK.

• It’s still not very clear, what the purpose of the stack is.

Stack management

• For memory safety, it’s important that operations on the stack are

balanced.

• Otherwise, adjacent fields in the font structure, or adjacent allocations on the

pools could be overwritten.

• In the code above, it all looks good: 1x PUSH and 1x POP afterwards.

• As long as the functions in between don’t perform any stack operations by

themselves.

GetOpenTypeGlyphName() pseudo-code

PushMarkerToStack();

int glyph_name_offset = ReadCFFEntryOffset(glyph_id);

int next_glyph_name_offset = ReadCFFEntryOffset(glyph_id + 1);

*pNameLength = next_glyph_name_offset - glyph_name_offset;

EnsureBytesAreAvailable(next_glyph_name_offset - glyph_name_offset);

PopMarkerFromStack();

Fully controlled

EnsureBytesAreAvailable()

• Custom name based on reverse engineering.

• Probably not only ensures bytes are available, but also retrieves

them.

• By fully controlling the 32-bit parameter, we can cause it to fail.

• How does it handle failure?

Error handling

• An exception is generated and handled internally by the function.

• As part of it, all items up to and including -1 are popped from the stack.

• This interferes with the stack balance, as the element counter is decreased again as

part of normal execution.

• After the escape’s handler execution, nHeldDataKeys is smaller by 1 than

before.

• We can indefinitely set it to -1, -2, -3, … and write data to those indexes.

• The result is a pool-based buffer underflow.

Pool-based buffer underflow

• Persistently decrementing the counter by 1 requires writing 0xffffffff

to the current out-of-bounds element.

• With some pool massaging, this primitive should be sufficient to get arbitrary

code execution.

• Other values may be written to the stack, too (mostly kernel-mode

addresses), which should further facilitate exploitation.

• The core of a basic proof of concept is very simple.

PVOID address;

GetFontData(hdc, 'ebdA', 0, &address, sizeof(PVOID));

while (1) {

BYTE buffer[48] = { 0 };

*(WORD *)&buffer[2] = 391;

*(PVOID *)&buffer[4] = address;

NamedEscape(NULL, L"ATMFD.DLL", 0x250C,

sizeof(buffer), buffer,

sizeof(buffer), buffer);

}

SPECIAL_POOL_DETECTED_MEMORY_CORRUPTION (c1)
Special pool has detected memory corruption. Typically the current thread's
stack backtrace will reveal the guilty party.
Arguments:
Arg1: fe67ef50, address trying to free
Arg2: fe67ee28, address where bits are corrupted
Arg3: 006fa0b0, (reserved)
Arg4: 00000023, caller is freeing an address where nearby bytes within the same page have been

corrupted

Debugging Details:

…
STACK_TEXT:
9f4963e4 82930dd7 00000003 c453df12 00000065 nt!RtlpBreakWithStatusInstruction
9f496434 829318d5 00000003 fe67e000 fe67ee28 nt!KiBugCheckDebugBreak+0x1c
9f4967f8 82930c74 000000c1 fe67ef50 fe67ee28 nt!KeBugCheck2+0x68b
9f496818 82938b57 000000c1 fe67ef50 fe67ee28 nt!KeBugCheckEx+0x1e
9f49683c 8293963d fe67ef50 fe67e000 fe67ef50 nt!MiCheckSpecialPoolSlop+0x6e
9f49691c 82973b90 fe67ef50 00000000 fe67ef50 nt!MmFreeSpecialPool+0x15b
9f496984 96a609cc fe67ef50 00000000 fe67ef60 nt!ExFreePoolWithTag+0xd6
9f496998 96b44ec1 fe67ef60 09fe969f 00000000 win32k!VerifierEngFreeMem+0x5b

…

Vulnerability conditions and requirements

• A specially crafted OpenType font must be loaded in the system.

• Name INDEX with two specific, 32-bit offset entries.

• Trivial in a local scenario, but could also be possible in a remote one, for targets which

support embedded fonts.

• The kernel-mode address of the font object must be specified in the i/o buffer.

• Not a problem in a local scenario, as shown above.

• Nearly impossible in a remote scenario due to insufficient interaction capabilities.

• On 32-bit platforms, there is realistically ~25 unknown bits, so ~33m possible addresses.

• Maybe could be brute-forced within somewhat realistic file sizes.

Vulnerability conditions and requirements

• To get any benefit from the memory corruption, pool memory must

be massaged, to overwrite some actually meaningful data.

• Possible in a local scenario, very difficult or nearly impossible in a remote one.

• In summary:

• Elevation of Privileges as a local user.

• Maybe a DoS with some luck and a specific configuration (x86) in a remote

scenario.

NamedEscape attack surface summary

• Extremely old and obscure communication interface.

• Bad coding practices, such as sharing ring-0 addresses with ring-3 code.

• It was probably long forgotten and would likely stay that way if not for the HackingTeam 0-day.

• Unfortunately no browserkernel exploits found.

• It was close, and a long shot anyway.

• Some interesting issues were uncovered, anyway.

• I also rediscovered the HT vulnerability.

• Audited manually as a whole, but some bugs could obviously still lurk there.

• A prime example of a deep system interface that the EMF files are able to easily touch.

Auditing GDI+
Out of time, please see the full slide deck released after the conference.

Hacking VMware Workstation

EMF in print spooling

• EMF files are also used heavily in print spooling.

• This opens up more format-related attacks vectors, in the form of

printer drivers (and other related software).

• One such feasible target is VMware Workstation.

Virtual printers

• A feature which allows a virtual machine to print documents to printers available on the

host (basically printer sharing).

• A feasible VM escape attack vector.

• To my best knowledge, it was enabled by default in 2015, but it’s no longer the case

(likely thanks to bugs reported by Kostya Kortchinsky).

• Still a frequently used option.

Architecture

VM #3 VM #2 VM #3

poc.exe

Virtual Machines

vmware.exe

COM1

vprintproxy.exe

Windows Named Pipes

Architecture

• The attacked process is vprintproxy.exe running on the host.

• Receives almost verbatim data sent by an unprivileged process in a guest

system.

• Quite a communication channel.

• The data is sent in the form of EMFSPOOL files.

• Similar to EMF, with the extra option to embed fonts in various formats.

TPView

• More specifically, the most interesting EMF handling takes place in TPview.dll.

• Together with some other printer-related libraries, they all seem to be developed by a third

party, ThinPrint.

• Mostly just falls back to GDI, but also performs specialized handling of several

record types.

• Used to be full of simple bugs, but Kostya found (nearly) all of them!

• Took another look, discovered a double-free and out-of-bounds memset(), but that’s all

(issues #848 and #849).

JPEG2000 decoding

• There was one last custom EMF record which seemed completely

unexplored.

• ID = 0x8000.

• Based on debug strings, it was clear that it was related to JPEG2000 decoding.

• I am no expert at JPEG2K, and the code doesn’t seem to be

convenient for manual auditing.

• Let’s fuzz it?

Approaching the fuzzing

• Best fuzzing: on Linux, at scale, with AddressSanitizer and coverage

feedback.

• After some research, it turns out that the JPEG2000 decoder is authored by

yet another vendor, LuraTech.

• Commercial license, source code not freely available.

• So, are we stuck with TPview.dll wrapped by VMware Workstation?

• Still feasible, but more complex, slower, and less advanced.

More research

• After some more digging, I found out that the same vendor released a

freeware JPEG2000 decoding plugin for the popular IrfanView program.

• JPEG2000.DLL.

• Cursory analysis shows that this is the same or a very similar code base.

• The plugin interface is an extremely simple to use, and resembles the

following definition.

HGLOBAL ReadJPG2000(IN PCHAR lpFilename,

IN DWORD dwUnknown,

OUT PCHAR lpStatus,

OUT PCHAR lpFormat,

OUT LPDWORD lpWidth,

OUT LPDWORD lpHeight);

Getting there...

• Thanks to this, we can already quickly fuzz-test the implementation in

a single process on Windows, without running VMware at all.

• A wrapper program for loading the DLL and calling the relevant function is

<50 LOC long.

• However, I’d really prefer to have this on Linux...

Fuzzing DLL on Linux

• Why not, really?

• The preferred base address is 0x10000000, which is available in the address space.

• Relocations not required; sections must be mapped with respective access rights.

• Other actions:

• Resolve necessary imports.

• Obtain the address of the exported function.

• Call it to execute the decoding.

• Should work!

Resolving imports

• The Import Table may be the only troublesome part.

• WinAPI functions not available on Linux.

• The DLL imports from ADVAPI32, KERNEL32, MSVCRT, SHELL32 and

USER32.

• C Runtime imports can be directly redirected to libc.

• All the other ones would have to be rewritten or at least stubbed-out.

KERNEL32 imports

• Three WinAPI functions used in decoding: GlobalAlloc, GlobalLock and GlobalUnlock:

void *GlobalAlloc(uint32_t uFlags, uint32_t dwBytes) __attribute__((stdcall));
void *GlobalAlloc(uint32_t uFlags, uint32_t dwBytes) {
void *ret = malloc(dwBytes);
if (ret != NULL) {

memset(ret, 0, dwBytes);
}
return ret;

}

void *GlobalLock(void *hMem) __attribute__((stdcall));
void *GlobalLock(void *hMem) {
return hMem;

}

bool GlobalUnlock(void *hMem) __attribute__((stdcall));
bool GlobalUnlock(void *hMem) {
return true;

}

Missing libc imports

• Two MSVCRT-specific imports were found, which had to be

reimplemented:

long long _ftol(double val) __attribute__((cdecl));

long long _ftol(double val) {

return (long long)val;

}

double _CIpow(double x, double y) __attribute__((cdecl));

double _CIpow(double x, double y) {

return pow(x, y);

}

It works!

$./loader JPEG2000.dll test.jp2

[+] Successfully loaded image (9b74ba8), format:
JPEG2000 - Wavelet, width: 4, height: 4

Running the fuzzing

• An internally available JPEG2000 input file corpus was used.

• The mutation strategy was adjusted to hit the 50/50 success/failure

rate.

• Left the dumb fuzzer running for a few days, and...

• ... 186 crashes with unique stack traces were found.

Crash reproduction

• Keep in mind the crashes are still in the plugin DLL, not VMware

Workstation.

• vprintproxy.exe is very convenient to use: creates a named pipe and

reads exactly the same data that is written to COM1.

• Once again we can check testcases without starting up any actual VMs.

• PageHeap enabled for better bug detection and deduplication.

Final results

Instruction Reason

add [eax+edx*4], edi Heap buffer overflow

cmp [eax+0x440], ebx Heap out-of-bounds read

cmp [eax+0x8], esi Heap out-of-bounds read

cmp [edi+0x70], ebx Heap out-of-bounds read

cmp [edi], edx Heap out-of-bounds read

cmp dword [eax+ebx*4], 0x0 Heap out-of-bounds read

cmp dword [esi+eax*4], 0x0 Heap out-of-bounds read

div dword [ebp-0x24] Division by zero

div dword [ebp-0x28] Division by zero

fld dword [edi] NULL pointer dereference

idiv ebx Division by zero

idiv edi Division by zero

imul ebx, [edx+eax+0x468] Heap out-of-bounds read

mov [eax-0x4], edx Heap buffer overflow

mov [ebx+edx*8], eax Heap buffer overflow

mov [ecx+edx], eax Heap buffer overflow

mov al, [esi] Heap out-of-bounds read

mov bx, [eax] NULL pointer dereference

mov eax, [ecx] NULL pointer dereference

mov eax, [edi+ecx+0x7c] Heap out-of-bounds read

Instruction Reason

mov eax, [edx+0x7c] Heap out-of-bounds read

movdqa [edi], xmm0 Heap buffer overflow

movq mm0, [eax] NULL pointer dereference

movq mm1, [ebx] NULL pointer dereference

movq mm2, [edx] NULL pointer dereference

movzx eax, byte [ecx-0x1] Heap out-of-bounds read

movzx eax, byte [edx-0x1] Heap out-of-bounds read

movzx ebx, byte [eax+ecx] Heap out-of-bounds read

movzx ecx, byte [esi+0x1] Heap out-of-bounds read

movzx ecx, byte [esi] Heap out-of-bounds read

movzx edi, word [ecx] NULL pointer dereference

movzx esi, word [edx] NULL pointer dereference

push dword [ebp-0x8] Stack overflow (deep / infinite recursion)

push ebp Stack overflow (deep / infinite recursion)

push ebx Stack overflow (deep / infinite recursion)

push ecx Stack overflow (deep / infinite recursion)

push edi Stack overflow (deep / infinite recursion)

push esi Stack overflow (deep / infinite recursion)

rep movsd Heap buffer overflow, Heap out-of-bounds read

Final results

• Crashes at 39 unique instructions.

• Many occurring at various points of generic functions such as memcpy(), so

not the most accurate metric.

• Quick classification: 18 low severity, 15 medium severity, 6 high severity.

• All reported to VMware on June 15.

• Fixed as part of VMSA-2016-0014 on September 13 (within 90 days).

Closing thoughts

Closing thoughts

• Metafiles are complex and interesting files, certainly worth researching further.

• Supported by a variety of valid attack vectors.

• They can even teach you things about the system API (i.e. the NamedEscape interface).

• As usual, the older and more obscure the format/implementation – the better for the

bughunter.

• Inspiration with prior work pays off again.

• The right tool for the right job – manual code auditing vs fuzzing.

Thanks!

@j00ru

http://j00ru.vexillium.org/

j00ru.vx@gmail.com

http://twitter.com/j00ru
http://j00ru.vexillium.org/
mailto:j00ru.vx@gmail.com

