
Make iOS App more Robust and
Security through Fuzzing

Wei Wang & Zhaowei Wang
2016-10-14

About us

• ID: Proteas, Shrek_wzw

• Working at: Qihoo 360 Nirvan Team

• Focused on: iOS and OS X Security Research

• Twitter: @ProteasWang, @Shrek_wzw

Agenda
• Status of iOS App Security Development Lifecycle

• Why Using AFL to Fuzz App during Development

• Port AFL to iOS

• Characteristics and Attacking Surfaces of iOS App

• Fuzz iOS App

• Fuzz 3rd Party Libraries

Status of iOS App Security Development Lifecycle

• There are about 2 million Apps on Apple AppStore as of June 2016

• Most developed by individual developers or small companies

• For most of those developers or companies, there is no security engineer to
protect the Apps

• So the SDL may be like this:

Status of iOS App Security Development Lifecycle

Status of iOS App Security Development Lifecycle

• For companies with iOS security engineers

• Developers submit the App to security engineers first

• Security engineers assess the App using the blackbox way

• After security assessment, the App is submitted to iTunes Connect

Status of iOS App Security Development Lifecycle

Why Using AFL to Fuzz App during Development

• Bugs should be found as earlier as possible

• We have the source code of our App, this is import for using AFL

• AFL is easy to config and easy to use

• Can be integrated with CI(Continuous Integration)

• When run unit tests with CI, should also run AFL fuzzing

Why Using AFL to Fuzz App during Development
• SDL with AFL

Port AFL to iOS - Port Codes

• Change the API used to create shared memory: shmget() —> shm_open()

• All other changes are for this

• Get the code from my repo: https://github.com/Proteas/afl/tree/ios-afl-clang-fast

• This method is also compatible with AFL 2.35b(currently latest version)

https://github.com/Proteas/afl/tree/ios-afl-clang-fast

Port AFL to iOS - Build Clang

• Before building AFL, should first build clang

• Get code from: http://opensource.apple.com/

• Using Apple’s clang is for compatibility when building Xcode projects

• After building clang, add the result bin dir to PATH

• export PATH=“${CLANG_DIST_DIR}/bin:${PATH}”

http://opensource.apple.com/

Port AFL to iOS - Build AFL

• Set Env param: export AFL_NO_X86=1

• Cross-compile targets:

• afl-fuzz, afl-showmap, afl-tmin, afl-gotcpu, afl-analyze

• ./llvm_mode/afl-llvm-rt.o

• Native compile: afl-clang-fast

• Use lipo to merge the build results, then can fuzz macOS and iOS App
using the same toolchain

Port AFL to iOS - Tips and Tricks

• Currently AFL-iOS can only fuzz arm64 binary

• Because AFL using C++11’s thread local storage, the App deployment
target should be >= 9.0

• Because of Jetsam, should limit the memory usage

• ./afl-fuzz -i ${TEST_CASES} -o ${RESULT_DIR} -m 80M ${TARGET_APP} @@

Port AFL to iOS

Characteristics and Attacking Surfaces of iOS App

• Most of the Apps only communicate with their own server

• Requires HTTPS connections for iOS Apps by the end of this year

• The remote attacking surface is narrow relatively after using HTTPS

• If there are certificate validation vulnerabilities or config mistakes in iOS App

• Traditional remote attacking surfaces will be back

Characteristics and Attacking Surfaces of iOS App

• Most of the communication protocol of iOS App based on:

• JSON

• XML
• Protocol Buffers

• If can be hijacked, the type-confusion is a kind of issue

• We should validate the input data immediately after receiving it:

• JSON Schema
• XML Schema

• Not allow any malformed data come into our App

Characteristics and Attacking Surfaces of iOS App
• If there are no certificate validation issues

• We should pay more attention to this kind of Apps:

• Apps like: iMessage, Twitter, Facebook, Dropbox, etc

• Different Apps have different attack surfaces depends on how it processing
the user generated data

Characteristics and Attacking Surfaces of iOS App

• There are lots of iOS libraries on Github

• Writing iOS App is more and more like “stacking wood”

• Search “ios” on Github(1476435790):

Characteristics and Attacking Surfaces of iOS App

• Sharing is great

• There are so many codes on Github

• Some are shared by companies with fully testing or security assessment

• Some are written by individual developers

• Some are just demos

• We should do something to make the code more security

• Using AFL is a practical choice

Characteristics and Attacking Surfaces of iOS App

• What libraries are more suitable for fuzzing with AFL ?

• Parsers: JSON Parser, XML Parser, DSLs Parser

• Video & Audio Encoder and Decoder

• Image Encoder and Decoder

• Archive related libraries

• …

Fuzz iOS App

• Introduce practical steps about how to fuzz our own codes

• We will use an open source app to demonstrate all the process

• The key point here is: the target function to be fuzzed is coupled seriously

• So the target function can’t be fuzzed on macOS

• We need to do fuzzing on iDevice

Fuzz iOS App

• The demo App: https://github.com/songfei/ArchiveALL

• Function of ArchiveALL is unarchiving rar, lzma, zip on iOS

• Function code is seriously coupled with the demo app

• It is not easy to extract the specific function(for example: unrar)

https://github.com/songfei/ArchiveALL

Fuzz iOS App

• clone the repository, and create a new branch: AFL-Fuzz

• check out the newly created branch

• copy main.m to main-normal.m

• create file: main-afl.m

• add following contents to main-afl.m:

Fuzz iOS App

#import "SFArchiveFileItem.h"
#import "SF7zArchive.h"
#import "SFRarArchive.h"
#import "SFZipArchive.h"

int DoFuzzing(int argc, char * argv[]);
int FuzzArchive(SFBaseArchive *archive);
int FuzzUnzip(NSString *fileName);
int FuzzUnrar(NSString *fileName);
int FuzzUn7z(NSString *fileName);

int main(int argc, char * argv[])
{
 @autoreleasepool {
 return DoFuzzing(argc, argv);
 }
}

int DoFuzzing(int argc, char * argv[])
{
 if (argc != 3) {
 NSLog(@"Usage: ./ArchiveAll 0|1|2 ./test.zip");
 return -1;
 }

 NSFileManager *fileManager = [NSFileManager defaultManager];
 NSString *inputFileName = [NSString stringWithUTF8String:argv[2]];
 if (![fileManager fileExistsAtPath:inputFileName]) {
 NSLog(@"%s: file not exist", __FUNCTION__);
 return -1;
 }

 // Fuzz Type
 int type = 0;

 NSString *inputType = [NSString stringWithUTF8String:argv[1]];
 type = (int)[inputType integerValue];

 if (type == 0) {
 return FuzzUnzip(inputFileName);
 }
 else if (type == 1) {
 return FuzzUnrar(inputFileName);
 }
 else if (type == 2) {
 return FuzzUn7z(inputFileName);
 }
 else {
 NSLog(@"error fuzz type");
 return -1;
 }
}

main-afl.m

Fuzz iOS App
• Edit main.m:

#ifdef AFL_FUZZ
 #include "./main-afl.m"
#else
 #include "./main-normal.m"
#endif

• Key point of above code is using macro to control the entry of the App

Fuzz iOS App
• Create afl-ios.xcconfig to config build params for AFL building

ONLY_ACTIVE_ARCH = NO
ARCHS = arm64
VALID_ARCHS = arm64
ENABLE_BITCODE = NO
OTHER_CFLAGS = "-DAFL_FUZZ=1"
OTHER_CPLUSPLUSFLAGS = "-DAFL_FUZZ=1"
OTHER_LDFLAGS = $(PATH_TO_AFL_DIST)/afl/afl-llvm-rt.o

Fuzz iOS App
• Build

AFL_ROOT_DIR="TODO"

export AFL_PATH="${AFL_ROOT_DIR}"
export PATH="${AFL_ROOT_DIR}:${PATH}"

rm -rf "./Build"

xcodebuild \
 CC="${AFL_ROOT_DIR}/afl-clang-fast" \
 CXX="${AFL_ROOT_DIR}/afl-clang-fast++" \
 -project "ArchiveALL.xcodeproj" \
 -target "ArchiveALL" \
 -xcconfig "./afl-ios.xcconfig" \
 -configuration "Debug"

Fuzz iOS App
• Run it on iDevice

• Fuzzing Unrar

Fuzz iOS App

• As the image shows: In less than 1 minute, we got a DoS

• It can also DoS the App used this library.

• QQ Browser v6.7.2.2345

• All the following fuzzers and fuzzing results can be downloaded from:

• https://github.com/Proteas/fuzzers_based_on_afl

https://github.com/Proteas/fuzzers_based_on_afl

Fuzz iOS App
• QQ Browser v6.7.2.2345

• unrar DoS

• CPU Usage: 99.4%

• The GUI is freezing

• Need to kill the app

Fuzz 3rd Party Libraries

• With the doc of AFL and the previous information

• You can build your own fuzzers based on AFL

• Although we can fuzz on iOS, we prefer to do fuzzing on OS X

• The following will show some fuzzers and analysis some of the fuzzing
results

Fuzz 3rd Party Libraries
• ZXingObjC - v3.1.0

• An Objective-C Port of ZXing

• Out-of-Bounds Read

• 140+ hangs(infinite loop)

Fuzz 3rd Party Libraries
• Unrar4iOS - 1.0.0 - 6c90561

• heap overflow: -[Unrar4iOS extractStream:]

• heap overflow in C, but ObjC object may be overwritten

• Unrar4iOS.mm
// alloc buffer
NSLog(@"buffer size: %lu", length);
UInt8 *buffer = (UInt8 *)malloc(length * sizeof(UInt8));

……

// copy data to buffer
NSLog(@"memcpy size: %ld", P2);
memcpy(*buffer, (UInt8 *)P1, P2);

Fuzz 3rd Party Libraries
• opus codec

• Audio Codecs

• Versions

• flac-1.3.0

• libogg-1.3.2

• opus-1.1

• opus-tools-0.1.9

• Analysis the fuzzing results, you will find: stack overflows, integer overflows, …

Fuzz 3rd Party Libraries
• opus codec - encode - wav

• Some are exploitable

• Floating point exception: 8

• AddressSanitizer failed to allocate 0xfffffffffffe0004 bytes

• AddressSanitizer: stack-overflow on address
0x7fff5b3ceb88

• AddressSanitizer: heap-buffer-overflow on address
0x00014ad3c800

• ……

Fuzz 3rd Party Libraries
• opus codec - encode - aif

• Some are exploitable

• AddressSanitizer: stack-overflow on address 0x7ffed2b175d8

• AddressSanitizer: heap-buffer-overflow on address
0x62e000000000

• AddressSanitizer failed to allocate 0xfffffffffffe0004 bytes

• AddressSanitizer: SEGV on unknown address 0x62de00001dac

• AddressSanitizer: unknown-crash on address 0xfffffff504c0d420

• ……

Fuzz 3rd Party Libraries

• opus codec - encode - flac

• AddressSanitizer: SEGV on unknown address
0x000000000000

• Floating point exception: 8

• AddressSanitizer: SEGV ??:0 oi_strncasecmp

• ……

Fuzz 3rd Party Libraries
• lame mp3 encoder - 3.99.5

• AddressSanitizer: SEGV on unknown address
0x60bffff05b38

• AddressSanitizer: SEGV ??:0 fill_buffer

• AddressSanitizer: SEGV on unknown address
0x000000000000

• AddressSanitizer: heap-buffer-overflow on address
0x60c00000bd3c

• AddressSanitizer: heap-buffer-overflow ??:0 fill_buffer

• ……

Fuzz 3rd Party Libraries

• KxMovie(ffmpeg decoder) -
2c5324b0

• iOS movie player based on ffmpeg

• Fuzz results: decode flv

• You could clone the fuzzer and
continue to fuzz other formats

Thanks

• Thanks To Michal Zalewski <lcamtuf@google.com>
• For developing and sharing AFL

Reference
• Number of apps available in leading app stores as of June 2016

• American Fuzzy Lop: http://lcamtuf.coredump.cx/afl/

• ArchiveALL: https://github.com/songfei/ArchiveALL

• ZXingObjC: https://github.com/TheLevelUp/ZXingObjC

• Unrar4iOS: https://github.com/ararog/Unrar4iOS

• opus codec: https://www.opus-codec.org/

• KxMovie: https://github.com/kolyvan/kxmovie

https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
http://lcamtuf.coredump.cx/afl/
https://github.com/songfei/ArchiveALL
https://github.com/TheLevelUp/ZXingObjC
https://github.com/ararog/Unrar4iOS
https://www.opus-codec.org/
https://github.com/kolyvan/kxmovie

Question ?

