Make 10S App more Robust and
Security through Fuzzing

Wel Wang & Zhaowel Wang
2016-10-14

ADOUt US

e |D: Proteas, Shrek wzw
o Working at: Qihoo 360 Nirvan Team
 Focused on: 1I0S and OS X Security Research

o Twitter: @ProteasWang, @Shrek_wzw

Agenaa

o Status of I0S App Security Development Lifecycle
 Why Using AFL to Fuzz App during Development
o Port AFL to iOS

o Characteristics and Attacking Surfaces of iI0S App

e Fuzz iIOS App

e Fuzz 3rd Party Libraries

Status of I0S App Security Development Litecycle

e There are about 2 million Apps on Apple AppStore as of June 2016
 Most developed by individual developers or small companies

e For most of those developers or companies, there is no security engineer to
orotect the Apps

e So the SDL may be like this:

Status of I0S App Security Development Litecycle

Status of I0S App Security Development Litecycle

e For companies with I0S security engineers
 Developers submit the App to security engineers first
e Security engineers assess the App using the blackbox way

o After security assessment, the App is submitted to iTunes Connect

Status of I0S App Security Development Litecycle

Why Using AFL to Fuzz App during Development

 Bugs should be found as earlier as possible

* \We have the source code of our App, this is import for using AFL
 AFL is easy to config and easy to use

e Can be integrated with Cl(Continuous Integration)

* \WWhen run unit tests with CI, should also run AFL fuzzing

Why Using AFL to Fuzz App during Development

e SDL with AFL

? . .

<Security Engineer>

<User>

Port AFL to 10S - Port Codes

 Change the API| used to create shared memory: shmget() —> shm_open()

» All other changes are for this

» (Get the code from my repo: https://github.com/Proteas/afl/tree/ios-afl-clang-fast

e This method is also compatible with AFL 2.35b(currently latest version)

https://github.com/Proteas/afl/tree/ios-afl-clang-fast

Port AFL to 10S - Build Clang

o Before building AFL, should first build clang

* (Get code from: http://opensource.apple.com/

o Using Apple’s clang is for compatibility when building Xcode projects

o After building clang, add the result bin dir to PATH

+ export PATH=“${CLANG DIST DIR}/bin:S$S{PATH}"”

http://opensource.apple.com/

Port AFL to 10 - Build AFL

e Set Env param: export AFL NO X86=1

e Cross-compile targets:

- afl-fuzz, afl-showmap, afl-tmin, afl-gotcpu, afl-analyze

./11lvm mode/afl-1lvm-rt.o

 Native compile: afl-clang-fast

e Use 1lipo to merge the build results, then can fuzz macOsS and 10S App
using the same toolchain

Port AFL to 10S - Tips and Tricks

o Currently AFL-iIOS can only fuzz arm64 binary

 Because AFL using C++11's thread local storage, the App deployment
target should be >= 9.0

 Because of Jetsam, should limit the memory usage

- ./afl-fuzz -1 S{T

5ST CAS:

St —o ${R

ESULT DIR} -m 80M ${TARGI

©T APP} QG

Port AFL to 10S

american fuzzy lop 2.13b (ffmpeg-ios-decoder)

overall results
0 days, 0 hrs, 13 min, 38 sec cycles done
0 days, 0 hrs, 0 min, 0 sec otal
none seen yet
none seen yet
map coverage

: ing : 0 (0.00%) map density : 5856 (8.94%)
aths timed out : 0 (0.00%) count coverage : 2.15 bits/tuple
stage progress findings in depth
now trying : calibration favored paths : 1 (0.24%)

stage execs 0/10 (0.00%) new edges on : 137 (32.46%)
total execs : 18.8k tal rashes : 0 (0 unique)
exec speed : 23.66/sec (slow!) total hangs : 0 (0 unique)
fuzzing strategy yields . — path geometry
bit flips : 0/0, 0/0, 0/0 levels : 2
flips : 0/0, 0/0, 0/0 pending : 422
yrithmetics : 0/0, 0/0, 0/0 pend fav : 1
Y known ints : 0/0, 0/0, 0/0 own finds : 420
jictionary : 0/0, 0/0, 0/0 imported : n/a

0/0, 0/0 variable : 398
[cpu:117%]

0.00%/620, n/a

Characteristics and Attacking Surfaces of iOS App

 Most of the Apps only communicate with their own server

 Requires HTTPS connections for iOS Apps by the end of this year

* The remote attacking surface is narrow relatively after using HT TPS

* |f there are certificate validation vulnerabilities or config mistakes in 10S App

» [raditional remote attacking surfaces will be back

Characteristics and Attacking Surfaces of iOS App

 Most of the communication protocol of iOS App based on:

« JSON
XML

e Protocol Buffers

e |f can be hijacked, the type-confusion is a kind of issue

* \We should validate the input data immediately after receiving it:

e JSON Schema
e XML Schema

 Not allow any maltormed data come into our App

Characteristics and Attacking Surfaces of iOS App

e |fthere are no certificate validation issues

e \We should pay more attention to this kind of Apps:

submif request |
Generated Y =) v o |
q
(W1, «

 Apps like: IMessage, Twitter, Facebook, Dropbox, etc

* Different Apps have different attack surfaces depends on how it processing
the user generated data

Characteristics and Attacking Surfaces of iOS App

e There are lots of 10S libraries on Github

e Writing iOS App is more and more like “stacking wood”

e Search “ios” on Github(1476435790):
Search ‘ Search

7

‘ || Repositories 146,178
¢>| Code 29,223,249

@ Issues 505,486 owncloud/ios Objective-C % 297 19469

e've found 146,178 repository results Sort: Best match v

Wikis 49,961 B i0S app for ownCloud

Updated 10 hours ago
d Users 7,691

Characteristics and Attacking Surfaces of iOS App

e Sharing is great

e [here are so many codes on Github

e Some are shared by companies with fully testing or security assessment
e Some are written by individual developers

e SOme are just demos

* \We should do something to make the code more security

 Using AFL Is a practical choice

Characteristics and Attacking Surfaces of iOS App

* \WWhat libraries are more suitable for fuzzing with AFL 7

 Parsers: JSON Parser, XML Parser, DSLs Parser

e Video & Audio Encoder and Decoder

* |mage Encoder and Decoder

e Archive related libraries

Fuzz 10S App

* |Introduce practical steps about how to fuzz our own codes

 \We will use an open source app to demonstrate all the process

* [he key point here is: the target function to be fuzzed is coupled seriously
* SO the target function can't be fuzzed on macOS

* \We need to do fuzzing on iDevice

Fuzz 10S App

e The demo App: hitps://github.com/songfei/ArchiveALL

e Function of ArchiveALL is unarchiving rar, lzma, zip on iOS
* Function code Is seriously coupled with the demo app

e |t IS not easy to extract the specitic function(for example: unrar)

https://github.com/songfei/ArchiveALL

Fuzz 10S App

e clone the repository, and create a new branch: AFL-Fuzz

* check out the newly created branch

* COpymain.mlOmain—-normal.m

e create file: main-afl.m

e add following contents to main-afl.m:

Fuzz 10S App

main—-afl.m

Fuzz 10S App

e Fditmain.m:

o Key point of above code is using macro to control the entry of the App

Fuzz 10S App

e Create afl-ios.xcconfig to config build params for AFL building

Fuzz 10S App

e Bulld

Fuzz 10S App

e Run it on IDevice

american fuzzy lop 2.13b

@ days, @ hrs, @ min, 39 sec
@ days, @ hrs, 0 min, @ sec

® FUZZing Unrar none seen yet

@ days, @ hrs, @ min, 5 sec

0 (0.00%) 1276 (1.95%)
0 (0.00%) 1.82 bits/tuple

calibration 1 (2.44%)

7/10 (70.00%) 34 (82.93%)

714 O (0 unique)
1 (1 unigue)

0/0, 0/0,
0/0, 0/0,
0/0, 0/0,
0/0, 0/0,
0/0, 0/0,
0/0, 0/0
0.00%/99,

Fuzz 10S App

* As the image shows: In less than 1 minute, we got a DoS

e |t can also Dos the App used this library:.

e QQ Browser v6.7.2.2345
* All the following fuzzers and fuzzing results can be downloaded from:

e https://github.com/Proteas/fuzzers based on_afl

https://github.com/Proteas/fuzzers_based_on_afl

Fuzz 10S App

 QQ Browser vb.7.2.2345
e unrar DoS

 CPU Usage: 99.4%

L
 The GUI is freezing

 Need to kill the app

34,148 com. apple dt.ins root 1.14 MiB 664.89 MiB arm64 00.56069
34,156 65.02 MiB| 899.41 MiB 1:35.719..

34,158 - com.apple.dt.ins root ~ 2.32MiB ©666.88 MiB arm64 secur DAl BALOD]

i

~uzz 3rd Party Libraries

o With the doc of AFL and the previous information
e You can build your own fuzzers based on AFL
o Although we can fuzz on 10S, we preter to do fuzzing on OS X

* The following will show some fuzzers and analysis some of the fuzzing
results

~uzz 3rd Party Libraries

- ZXingObjC - v3.1.0
* An Objective-C Port of ZXing
* Qut-of-Bounds Read

* 140+ hangs(infinite loop)

SUMMARY : AddressSanitizer: heap-buffer-overflow ZXBitMatrix.m:140 -[ZXBitMatrix getX:y: |
Shadow bytes around the buggy address:

Ox1c0oc000033b0

Ox1c0o000033¢c0:

Ox1c0o000033d0: 00 00 00 Q0 00 00 Q0

Ox1cOo00033ed: 00 00 00 00 00 00

Ox1c0600003310: 00 00

=>0x1c0600003400: 00 fa|fa]ta 00 00 00 00
0x1co00003410.
0x1c0000003420.
0x1co00003430.
0x1c0000003440. 00 00 00 00
0x1c0o000d3450.

—uzz 3rd Party Libraries

- Unrar4iOS - 1.0.0 - 6¢90561
* heap overtlow: -[Unrar4iOS extractStream:]

* heap overtlow in C, but ObjC object may be overwritten

« Unrar410S.mm

~uzz 3rd Party Libraries

* Opus codec
e Audio Codecs

e \ersions

+ flac-1.3.0
+ libogg-1.3.72
« oOpus-1.1

« opus—-tools-0.1.9

* Analysis the fuzzing results, you will find: stack overflows, integer overflows, ...

~uzz 3rd Party Libraries

+ Opus codec - encode - wav

- Some are exploitable
e Floating point exception: 8
e AddressSanitizer failed to allocate Oxfffftifiite0004 bytes

e AddressSanitizer: stack-overflow on address
Ox/Tfftbb3ceb88

* AddressSanitizer: heap-buffer-overflow on address
0x00014ad3c800

american fuzzy lop 2

9 days, 4 hrs, 12 min,
@ days, 3 hrs, 41 min,
@ days, 6 hrs, 48 min,
@ days, 3 hrs, 15 min,

959* (62.31%)
0 (0.00%)

havoc
151k/160k (94.42%)
7.32M

265/177k, 72/177k, 36/177k
8/22.2k, 3/21.7k, 1/21.6k
210/1.21M, 4/843k, 0/104k
29/100k, 70/500k, 25/933k
0/0, 0/0, 13/264k
822/2.57M, 0/0
20.33%/10.8k, 2.25%

.13b (opusenc)

2893 (4.41%)
7.03 bits/tuple

47 (3.05%)
89 (5.78%)

4061 (45 unique)

4
1496
25
1538
n/a

~uzz 3rd Party Libraries

opus codec - encode - aif

Some are exploitable
e AddressSanitizer: stack-overflow on address Ox7ffed?b175d8

» AddressSanitizer: heap-buffer-overflow on address
Ox62e000000000

e AddressSanitizer failed to allocate Oxffiittiffife0004 bytes
e AddressSanitizer: SEGV on unknown address 0x62de00001dac

e AddressSanitizer: unknown-crash on address Oxfffffif504c0d420

american fuzzy lop 2.13b (opusenc)

9 days, @ hrs, 33 min, 49 sec
1 days, 16 hrs, 45 min, 25 sec
© days, 23 hrs, 6 min, 50 sec
© days, 8 hrs, 43 min, 3 sec

593*% (47.21%)
0 (0.00%)

1interest 32/8

63.6k/123k (51.62%)
7 .8M

279/273k, 71/273k, 40/273k
8/34.1k, 3/33.1k, 5/33.1k
168/1.85M, 9/1.29M, 1/141k
28/155k, 77/762k, 16/1.32M
0/0, 0/0, 12/265k
567/1.00M, 0/0
47.00%/17.0k, 3.06%

2904 (4.43%)

.83 bits/tuple

58 (4.62%)
87 (6.93%)

681 (123 unique)

~uzz 3rd Party Libraries

opus codec - encode - flac

AddressSanitizer: SEGV on unknown address
Ox000000000000

Floating point exception: 8

AddressSanitizer: SEGV 77:0 oi_strncasecmp

american fuzzy lop 2.13b (opusenc)

9 days, @ hrs, 31 min, 48 sec
1 days, 7 hrs, 56 min, 4 sec
8 days, 16 hrs, 13 min, 5 sec
none seen yet

297 (30.56%)
0 (0.00%)

auto extras (over)
366k/435k (84.23%)
20.3M

148/3.67M, 76/3.6™M, 58/3.67M
6/459k, 3/26.9k, 2/27.3k
161/1.49M, 18/1.32M, 1/1.20M
20/87.6k, 68/354k, 73/610k
0/0, 0/0, 60/496k

271/2.80M, 0/0

1.07%/57.0k, 94.13%

3158 (4.82%)

5.23 bits/tuple

152 (15.64%)
208 (21.40%)

O (@ unique)

3

919
123
970
n/a

~uzz 3rd Party Libraries

lame mp3 encoder - 3.99.5

american fuzzy lop 2.13b

o AddreSSSan/l‘/'Zel’.' SEGV On UﬂkﬂOWﬂ addreSS @ days, @ hrs, 55 min, 18 sec
@ days, @ hrs, @ min, 54 sec
0X6Obffff05b38 @ days, @ hrs, 19 min, 13 sec
none seen yet
e AddressSanitizer: SEGV ?7:0 fill_buffer 32 (3.30%) 2667 (4.07%)
0 (0.00%) 4.50 bits/tuple
iy . interest 16/8 65 (6.69%)
e AddressSanitizer: SEGV on unknown address S T TR
Ox000000000000 462k
110.8/sec ® (@ unique)
o 345/12 .3k, 63/12.3k, 29/12.3l 3
 AddressSanitizer: heap-buffer-overflow on address B

Ox60c00000bd3c 108/85.8k, 17/59.3k, 3/7633 59

17/7137, 47/18.9k, 31/34.7k
0/0, 0/0, 7/3230

. . 308/182k, 0/0
e AddressSanitizer: heap'bUffer'OverfIOW 77:0 f///_bUffer 72.80%/812, 0.00%

~uzz 3rd Party Libraries

- KxMovie(ffmpeg decoder) -
2¢5324b0

e |OS movie player based on ffmpeg
e Fuzz results: decode flv

 You could clone the fuzzer and
continue to fuzz other formats

@ days, 15 hrs, 47 min, 43 sec
@ days, @ hrs, 4 min, 33 sec

@ days, @ hrs, 13 min, 38 sec
@ days, 15 hrs, 40 min, 53 sec

0 (0.00%)
0 (0.00%)

interest 16/8

12 .0k/160k (7.46%)
5406k

577/35.3k, 110/35.3k, 68/35.3k
4/4412, 8/4411, 21/4409
129/246k, 32/126k, 14/11.8k
45/19.9k, 0/0, 0/0
0/0, 0/0, 0/0
0/0, 0/0
0.00%/1090, 0.00%

5259 (8.02%)

3.30 bits/tuple

1 (0.10%)

160 (15.95%)
1 (1 unique)

2
1003
1
1002
n/a

1 hanks

 Thanks To Michal Zalewski <lcamtuf@google.com>
* For developing and sharing AFL

Reference

 Number of apps available in leading app stores as of June 2016

 American Fuzzy Lop: http://lcamtuf.coredump.cx/afl/

o ArchiveALL: https://github.com/songfei/ArchiveAlLL

e /XingODbjC: https://github.com/Thel evelUp/ZXingObjC

o Unrar4iOS: https://github.com/ararog/Unrar4iOS

* OpuUs codec: https://www.opus-codec.org/

o KxMovie: https://github.com/kolyvan/kxmovie

https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
http://lcamtuf.coredump.cx/afl/
https://github.com/songfei/ArchiveALL
https://github.com/TheLevelUp/ZXingObjC
https://github.com/ararog/Unrar4iOS
https://www.opus-codec.org/
https://github.com/kolyvan/kxmovie

Question ?

